Co-seismic changes of Wenchuan Ms8.0 earthquake and six strong aftershocks were recorded by 4 digital deformation instruments at Xuzhou seismostation at an cpicentral distance of 1392 km. The result shows that the str...Co-seismic changes of Wenchuan Ms8.0 earthquake and six strong aftershocks were recorded by 4 digital deformation instruments at Xuzhou seismostation at an cpicentral distance of 1392 km. The result shows that the straln-step changes and wave motions are caused by the arrival of the corresponding surface waves. The shape and size of the step changes and the response time were different for different instruments, even they were located in the same rock body only 7.65 m to 10.57 m apart. This difference is probably a reflection of different instrument properties, such as sensitivity and frequency response. The earthquake-caused stress changes, which were mainly compression in Xuzhou, had an important triggering effect on far-field strain changes展开更多
Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, ...Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.展开更多
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surf...Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.展开更多
The geography information system of the 1303 Hongtong M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquak...The geography information system of the 1303 Hongtong M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studied. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage dis-tribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.展开更多
Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the glob...Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the global ionospheric map (GIM), and electron density profiles detected by the Constellation Observation System for Meteorology Ionosphere and Climate (COSMIC). We applied a statistical test to detect anomalous TEC signals and found that a unique enhancement in TEC, recorded at 16 GPS stations, appeared on May 9, 2008. The critical fre- quency at F2 peak (foF2), observed by the Chinese ionosondes, and maximal plasma frequency, derived from COSMIC data, revealed a characteristic similar to GPS TEC variations. The GIM showed that the anomalous variations of May 9 were located southeast of the epicenter. Using GPS data from 13 stations near the epicenter, we analyzed the TEC variations of satellite orbit traces during 04:00-11:00 UT. We found that TEC decreased to the east and increased to the southeast of the epicenter during this period. Results showed that the abnormal disturbance on May 9 was probably an ionosphenc precursor of the Wenchuan earthquake of May 12, 2008.展开更多
During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near t...During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near the fault zone before an earthquake can better reflect the dynamic process of earthquake preparation. Thus, in this paper, the method of natural orthogonal function expansion has been adopted to discuss the time variation about the energy field of the seismic activity along the Longmenshan fault zone before the Wenchuan MsS. 0 earthquake, 2008. The results show that evident short-term rise changes appeared in the time factors of the typical field corresponding to several key eigenvalues of the energy field along the Longmenshan fault zone before the Wenchuan earthquake, probably being the short-term anomaly message for this earthquake. Through contrastive analysis of earthquake examples such as the 1976 Tangshan earthquake, the authors think that the study of time variation of energy field of seismicity along active fault zone will be helpful for conducting intentional and intensive earthquake monitoring and forecast in active fault regions with high seismic risk based on medium- and long-term earthquake trend judgment.展开更多
Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of...Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of earth resistivity at the observatory revealed that the underground water level dropped and the resistivity increased.It is postulated that in the special tectonic setting at Qingdao observatory,the variation of stress and strain caused the change of water level beneath the station,thus,leading to the variation of earth resistivity.The relationship between the variation of stress field and the change of earth resistivity before earthquake is analyzed.展开更多
On the basis of elastic rebound theory,using the horizontal velocity field of the Chinese mainland calculated from GPS data during three observation periods from 1999 to 2007,the velocity components that are parallel ...On the basis of elastic rebound theory,using the horizontal velocity field of the Chinese mainland calculated from GPS data during three observation periods from 1999 to 2007,the velocity components that are parallel and plumb to the fault zone are calculated respectively for different periods,and then relative ground movements of two sides of the fault zone are analyzed with power function fitting and graphics. The results show that the relative ground movement shows right-lateral shear deformation before the Wenchuan MS8. 0 earthquake,and at the same time the movement was hindered by the Longmenshan fault zone. Thus,this result has positive significance for distinguishing the elastic strain energy accumulation and deformation anomaly in an earthquake preparation process,and for conducting further research on earthquake prediction.展开更多
In this paper,the main purpose is to analyze and research the characteristics of the geoelectric field observed data with a long time span and large amplitude abnormal change,at the Lhasa geomagnetic station( hereafte...In this paper,the main purpose is to analyze and research the characteristics of the geoelectric field observed data with a long time span and large amplitude abnormal change,at the Lhasa geomagnetic station( hereafter referred to as "Lhasa station "),before and after the Nepal M_S8. 1 strong earthquake,which occurred on April 25,2015. Based on the observation conditions,the observation system,and the observed data of Lhasa station preliminary discussed,the main characteristics of the abnormal change and evolution process are analyzed and studied,using the following two methods; the "synthesis energy accumulation"and the "power as MSA spectrum"analysis,from the two aspects of the"Time Domain"and"Frequency Domain. "The results show that the abnormal change of the geo-electric field observation of Lhasa station experienced a development stage following the process of "trend change- disturbance change- earthquake period-recovery period",and an evolution process of "low frequency change- high frequency change- smooth change- high frequency change ",before and after the Nepal M_S8. 1strong earthquake. Comprehensive analysis shows that the variation characteristics and evolution process of the geo-electric field at Lhasa station are basically consistent with the results of the relevant mechanism and phenomenon research. So far,this is valuable information with certain objectivity,which is typical and representative to reflect the whole process of the gestation, occurrence and complete development of such strongearthquakes.展开更多
A Ms6. 8 earthquake occurred on October 5, 2008 in the Wuqia region in Xinjiang. The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic, 7km southwest of the Wuqia Yierkeshitan Port in Xinj...A Ms6. 8 earthquake occurred on October 5, 2008 in the Wuqia region in Xinjiang. The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic, 7km southwest of the Wuqia Yierkeshitan Port in Xinjiang. The epicenter intensity is VIII degrees (outside borders). The areas of intensity VII and VI are 7354km^2 and 1031km^2, respectively. This seismic event is related with movement of the NE-trending Kzikeaerkate fault belt. Buildings in the earthquake-stricken area were damaged or affected to a certain extent by this earthquake, accompanied with some phenomena of geological disaster.展开更多
The contrast research results show that the number of items and stations with imminent, short and medium term precursor anomalies for the Wenchuan M_S 8. 0 earthquake is less than that of the Menglian earthquake. The ...The contrast research results show that the number of items and stations with imminent, short and medium term precursor anomalies for the Wenchuan M_S 8. 0 earthquake is less than that of the Menglian earthquake. The number of anomalies and stations associated with the Wenchuan earthquake increased in the early stage of the short-term range,as opposed to the later period for the Menglian and Lijiang earthquakes. Most of the medium term anomalies occurred two to three years before the Wenchuan earthquake,when the number of anomaly stations and items was eleven,and a great change appeared in the observation values in about half of the stations ( items ) . However,for the Menglian earthquake,medium term anomalies happened one to two years before the earthquake, the number of abnormal stations and items reached 20,and a sharp change appeared in the observation values six months to one year before the earthquake in about 30 percent of the stations or items. In the epicenter and the nearby area,the macroscopic abnormalities started 3 years before the Wenchuan earthquake and lasted intermittently until 1 month before the earthquake. Within 2 percent of the total area of the province,the macroscopic abnormalities accounted for 30 to 50 percent of the total number of anomalies of the Province. For the Xingtai,Tangshan,Haicheng,Songpan earthquakes,the macroscopic anomalies started two to three months before,or on the very day of the earthquakes. The common feature of the precursors between the Wenchuan and other strong earthquakes is the appearance of tremendous changes in a certain number of observation values of anomalies in the mid and short terms before all these earthquakes.展开更多
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the c...Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.展开更多
In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are ana...In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are analyzed and summarized with the digital data. The results show that the Nepal M_S8. 1 earthquake had greater impact on the Yunnan region,and the macro and micro dynamics of fluids showed significant co-seismic response. The earthquake recording capacity of water level and temperature measurement is significantly higher than that of water radon and water quality to this large earthquake; the maximum amplitude and duration of co-seismic response of water level and water temperature vary greatly in different wells. The changing forms are dominated by fluctuation and step rise in water level,and a rising or falling restoration in water temperature. From the records of the main shock and the maximum strong aftershock,we can see that the greater magnitude of earthquake,the higher ratio of the occurrence of co-seismic response,and in the same well,the larger the response amplitude,as well as the longer the duration. The amplitude and duration of co-seismic response recorded by different instruments in a same well are different. Water temperature co-seismic response almost occurred in wells with water level response,indicating that the well water level and water temperature are closely related in co-seismic response,and the well water temperature seismic response was caused mainly by well water level seismic response.展开更多
基金supported by the National Natural Science Foundation ofChina(40901272)Social Development Proiects of Sciene and Tech-nology Department of Jiangsu Province(Bs2006085)
文摘Co-seismic changes of Wenchuan Ms8.0 earthquake and six strong aftershocks were recorded by 4 digital deformation instruments at Xuzhou seismostation at an cpicentral distance of 1392 km. The result shows that the straln-step changes and wave motions are caused by the arrival of the corresponding surface waves. The shape and size of the step changes and the response time were different for different instruments, even they were located in the same rock body only 7.65 m to 10.57 m apart. This difference is probably a reflection of different instrument properties, such as sensitivity and frequency response. The earthquake-caused stress changes, which were mainly compression in Xuzhou, had an important triggering effect on far-field strain changes
基金supported by the National Natural Science Foundation of China(41204058)the Running Foundation of the Gravity Network Center of China(201301008)
文摘Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.
基金Joint Seismological Science Foundation of China (No. 201017).
文摘Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.
文摘The geography information system of the 1303 Hongtong M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studied. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage dis-tribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.
基金supported financially by Science for Earthquake Resilience(XH14064Y)the open foundation of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2014-5-2-E)
文摘Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the global ionospheric map (GIM), and electron density profiles detected by the Constellation Observation System for Meteorology Ionosphere and Climate (COSMIC). We applied a statistical test to detect anomalous TEC signals and found that a unique enhancement in TEC, recorded at 16 GPS stations, appeared on May 9, 2008. The critical fre- quency at F2 peak (foF2), observed by the Chinese ionosondes, and maximal plasma frequency, derived from COSMIC data, revealed a characteristic similar to GPS TEC variations. The GIM showed that the anomalous variations of May 9 were located southeast of the epicenter. Using GPS data from 13 stations near the epicenter, we analyzed the TEC variations of satellite orbit traces during 04:00-11:00 UT. We found that TEC decreased to the east and increased to the southeast of the epicenter during this period. Results showed that the abnormal disturbance on May 9 was probably an ionosphenc precursor of the Wenchuan earthquake of May 12, 2008.
文摘During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near the fault zone before an earthquake can better reflect the dynamic process of earthquake preparation. Thus, in this paper, the method of natural orthogonal function expansion has been adopted to discuss the time variation about the energy field of the seismic activity along the Longmenshan fault zone before the Wenchuan MsS. 0 earthquake, 2008. The results show that evident short-term rise changes appeared in the time factors of the typical field corresponding to several key eigenvalues of the energy field along the Longmenshan fault zone before the Wenchuan earthquake, probably being the short-term anomaly message for this earthquake. Through contrastive analysis of earthquake examples such as the 1976 Tangshan earthquake, the authors think that the study of time variation of energy field of seismicity along active fault zone will be helpful for conducting intentional and intensive earthquake monitoring and forecast in active fault regions with high seismic risk based on medium- and long-term earthquake trend judgment.
基金supported by Natural Science Fondation of Shandong Province(ZR2010DM008)National Natural Science Foundation(40534023, 41074047),China
文摘Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of earth resistivity at the observatory revealed that the underground water level dropped and the resistivity increased.It is postulated that in the special tectonic setting at Qingdao observatory,the variation of stress and strain caused the change of water level beneath the station,thus,leading to the variation of earth resistivity.The relationship between the variation of stress field and the change of earth resistivity before earthquake is analyzed.
基金funded by the Special Subject of the National Key Technology R&D Program for the 11th "Five-year Plan" of China(2006BAC01B02-02-02)
文摘On the basis of elastic rebound theory,using the horizontal velocity field of the Chinese mainland calculated from GPS data during three observation periods from 1999 to 2007,the velocity components that are parallel and plumb to the fault zone are calculated respectively for different periods,and then relative ground movements of two sides of the fault zone are analyzed with power function fitting and graphics. The results show that the relative ground movement shows right-lateral shear deformation before the Wenchuan MS8. 0 earthquake,and at the same time the movement was hindered by the Longmenshan fault zone. Thus,this result has positive significance for distinguishing the elastic strain energy accumulation and deformation anomaly in an earthquake preparation process,and for conducting further research on earthquake prediction.
基金funded by the key projects off undamental Research projects in the Institute of Earthquake Science,CEA(Grant No:2013IES0101&2014IES0101)
文摘In this paper,the main purpose is to analyze and research the characteristics of the geoelectric field observed data with a long time span and large amplitude abnormal change,at the Lhasa geomagnetic station( hereafter referred to as "Lhasa station "),before and after the Nepal M_S8. 1 strong earthquake,which occurred on April 25,2015. Based on the observation conditions,the observation system,and the observed data of Lhasa station preliminary discussed,the main characteristics of the abnormal change and evolution process are analyzed and studied,using the following two methods; the "synthesis energy accumulation"and the "power as MSA spectrum"analysis,from the two aspects of the"Time Domain"and"Frequency Domain. "The results show that the abnormal change of the geo-electric field observation of Lhasa station experienced a development stage following the process of "trend change- disturbance change- earthquake period-recovery period",and an evolution process of "low frequency change- high frequency change- smooth change- high frequency change ",before and after the Nepal M_S8. 1strong earthquake. Comprehensive analysis shows that the variation characteristics and evolution process of the geo-electric field at Lhasa station are basically consistent with the results of the relevant mechanism and phenomenon research. So far,this is valuable information with certain objectivity,which is typical and representative to reflect the whole process of the gestation, occurrence and complete development of such strongearthquakes.
基金sponsored by the Relation between Western Characteristics in Seismic Tectonic Area with Strong Earthquakes in Large Delta of Mid Asia(2008CB425703)Xinjiang Aseismic Design and Prevention Datum and Information Management(200906),China
文摘A Ms6. 8 earthquake occurred on October 5, 2008 in the Wuqia region in Xinjiang. The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic, 7km southwest of the Wuqia Yierkeshitan Port in Xinjiang. The epicenter intensity is VIII degrees (outside borders). The areas of intensity VII and VI are 7354km^2 and 1031km^2, respectively. This seismic event is related with movement of the NE-trending Kzikeaerkate fault belt. Buildings in the earthquake-stricken area were damaged or affected to a certain extent by this earthquake, accompanied with some phenomena of geological disaster.
基金sponsored by the National Basic Research Program (973 Program),China (2008CB425700)
文摘The contrast research results show that the number of items and stations with imminent, short and medium term precursor anomalies for the Wenchuan M_S 8. 0 earthquake is less than that of the Menglian earthquake. The number of anomalies and stations associated with the Wenchuan earthquake increased in the early stage of the short-term range,as opposed to the later period for the Menglian and Lijiang earthquakes. Most of the medium term anomalies occurred two to three years before the Wenchuan earthquake,when the number of anomaly stations and items was eleven,and a great change appeared in the observation values in about half of the stations ( items ) . However,for the Menglian earthquake,medium term anomalies happened one to two years before the earthquake, the number of abnormal stations and items reached 20,and a sharp change appeared in the observation values six months to one year before the earthquake in about 30 percent of the stations or items. In the epicenter and the nearby area,the macroscopic abnormalities started 3 years before the Wenchuan earthquake and lasted intermittently until 1 month before the earthquake. Within 2 percent of the total area of the province,the macroscopic abnormalities accounted for 30 to 50 percent of the total number of anomalies of the Province. For the Xingtai,Tangshan,Haicheng,Songpan earthquakes,the macroscopic anomalies started two to three months before,or on the very day of the earthquakes. The common feature of the precursors between the Wenchuan and other strong earthquakes is the appearance of tremendous changes in a certain number of observation values of anomalies in the mid and short terms before all these earthquakes.
基金sponsored by the Earthquake Situation Tracking Program of 2014 (2014020110)the Science and Technological Fund of Earthquake Administration of Xinjiang Uygur Autonomous Region,China (201402)
文摘Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.
基金sponsored by the special fund of“A Study on Short-term Seismic Tracking of Strong Earthquakes in the Yunnan Area”of the“Ten Key Projects”in Yunnan Provincethe 2016 Earthquake Trend Tracking Task of China Earthquake Administration(2016010305)the 2015 Earthquake Trend Tracking Task of Earthquake Administration of Yunnan Province
文摘In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are analyzed and summarized with the digital data. The results show that the Nepal M_S8. 1 earthquake had greater impact on the Yunnan region,and the macro and micro dynamics of fluids showed significant co-seismic response. The earthquake recording capacity of water level and temperature measurement is significantly higher than that of water radon and water quality to this large earthquake; the maximum amplitude and duration of co-seismic response of water level and water temperature vary greatly in different wells. The changing forms are dominated by fluctuation and step rise in water level,and a rising or falling restoration in water temperature. From the records of the main shock and the maximum strong aftershock,we can see that the greater magnitude of earthquake,the higher ratio of the occurrence of co-seismic response,and in the same well,the larger the response amplitude,as well as the longer the duration. The amplitude and duration of co-seismic response recorded by different instruments in a same well are different. Water temperature co-seismic response almost occurred in wells with water level response,indicating that the well water level and water temperature are closely related in co-seismic response,and the well water temperature seismic response was caused mainly by well water level seismic response.