In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the He...In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.展开更多
This paper presents a numerical method for PDE-constrained optimization problems. These problems arise in many fields of science and engineering including those dealing with real applications. The physical problem is ...This paper presents a numerical method for PDE-constrained optimization problems. These problems arise in many fields of science and engineering including those dealing with real applications. The physical problem is modeled by partial differential equations (PDEs) and involve optimization of some quantity. The PDEs are in most cases nonlinear and solved using numerical methods. Since such numerical solutions are being used routinely, the recent trend has been to develop numerical methods and algorithms so that the optimization problems can be solved numerically as well using the same PDE-solver. We present here one such numerical method which is based on simultaneous pseudo-time stepping. The efficiency of the method is increased with the help of a multigrid strategy. Application example is included for an aerodynamic shape optimization problem.展开更多
This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system...This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system is symmetric and positive definite,and thus the algorithm is easy to implement and analyze.Convergence analysis in the H2 equivalent norm is established on an arbitrary shape regular polygonal mesh.A superconvergence result is proved when the coefficient matrix is constant or piecewise constant.Numerical examples are performed which not only verify the theoretical results but also reveal some unexpected superconvergence phenomena.展开更多
In this paper,we present a Hessian recovery based linear finite element method to simulate the molecular beam epitaxy growth model with slope selection.For the time discretization,we apply a first-order convex splitti...In this paper,we present a Hessian recovery based linear finite element method to simulate the molecular beam epitaxy growth model with slope selection.For the time discretization,we apply a first-order convex splitting method and secondorder Crank-Nicolson scheme.For the space discretization,we utilize the Hessian recovery operator to approximate second-order derivatives of a C^(0)linear finite element function and hence the weak formulation of the fourth-order differential operator can be discretized in the linear finite element space.The energy-decay property of our proposed fully discrete schemes is rigorously proved.The robustness and the optimal-order convergence of the proposed algorithm are numerically verified.In a large spatial domain for a long period,we simulate coarsening dynamics,where 1/3-power-law is observed.展开更多
基金financially supported by the National Important and Special Project on Science and Technology(2011ZX05005-005-007HZ)the National Natural Science Foundation of China(No.41274116)
文摘In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.
文摘This paper presents a numerical method for PDE-constrained optimization problems. These problems arise in many fields of science and engineering including those dealing with real applications. The physical problem is modeled by partial differential equations (PDEs) and involve optimization of some quantity. The PDEs are in most cases nonlinear and solved using numerical methods. Since such numerical solutions are being used routinely, the recent trend has been to develop numerical methods and algorithms so that the optimization problems can be solved numerically as well using the same PDE-solver. We present here one such numerical method which is based on simultaneous pseudo-time stepping. The efficiency of the method is increased with the help of a multigrid strategy. Application example is included for an aerodynamic shape optimization problem.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY19A010008).
文摘This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system is symmetric and positive definite,and thus the algorithm is easy to implement and analyze.Convergence analysis in the H2 equivalent norm is established on an arbitrary shape regular polygonal mesh.A superconvergence result is proved when the coefficient matrix is constant or piecewise constant.Numerical examples are performed which not only verify the theoretical results but also reveal some unexpected superconvergence phenomena.
基金supported by General Scientific Research Projects of Zhejiang Education Department(No.Y202147013)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-Sen University(No.2021008)+1 种基金supported in part by NSFC Grant(No.12071496)Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(No.2020B1212060032)。
文摘In this paper,we present a Hessian recovery based linear finite element method to simulate the molecular beam epitaxy growth model with slope selection.For the time discretization,we apply a first-order convex splitting method and secondorder Crank-Nicolson scheme.For the space discretization,we utilize the Hessian recovery operator to approximate second-order derivatives of a C^(0)linear finite element function and hence the weak formulation of the fourth-order differential operator can be discretized in the linear finite element space.The energy-decay property of our proposed fully discrete schemes is rigorously proved.The robustness and the optimal-order convergence of the proposed algorithm are numerically verified.In a large spatial domain for a long period,we simulate coarsening dynamics,where 1/3-power-law is observed.