To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)...To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.展开更多
The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Z...The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.展开更多
Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this...Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.展开更多
Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature...Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.展开更多
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production exp...Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.展开更多
The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed b...The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.展开更多
Situated between the petroliferous Cenozoic Zhujiang(Pearl)River Mouth Basin and the mud volcano-rich Mesozoic Dongsha Basin in the middle sector of the northern South China Sea,the Weitan Banks area has been previous...Situated between the petroliferous Cenozoic Zhujiang(Pearl)River Mouth Basin and the mud volcano-rich Mesozoic Dongsha Basin in the middle sector of the northern South China Sea,the Weitan Banks area has been previously mapped as a basement high that is composed of Mesozoic magmatic rocks.In this study,we present several favorable indicators for petroleum geology that were detected from geophysical profiling and benthic sampling in the area.A conspicuous hill was discovered,named“Zhongwei Hill”,~80 m high above the~340 m deep seafloor and~1 km broad,in a depression with more than 7 km thick sedimentary strata.The Zhongwei Hill was seismically imaged with a mushroom-shaped structure and containing a cake-like crown,fluid flow pipes,and an~10 km broad anticline at depth.Thus,the hill represents a source-plumbing-eruption system.Shallow gas zones linked to deep fracture were found at or near the hill.Stratigraphic correlation indicates that the deep strata comprise the Jurassic and Paleogene strata,the major hosts of hydrocarbon source rocks.In addition to the hill,there are number of mounds from which three bottom water samples were collected and the samples are rich in dissolved methane with concentrations high up to~900 nmol/L,much higher than the background level(0.5–2 nmol/L).The benthic samples are rich in coarse sediment clastics,authigenic carbonate nodules,and deep-water habitats likely feeding on methanotrophic community.Given these observations and the context,we propose that the Zhongwei Hill represents a mud volcano,likely thermally driven,that seeps methane from Jurassic and Paleogene source layers,thus poses a favorable clue for significant hydrocarbon generation capacity in transitional zone of the Zhujiang River Mouth Basin and the Dongsha Basin.展开更多
CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbon...CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.展开更多
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ...In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.展开更多
Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed usi...Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy.The performance of calcined red mud was determined through mortar strength tests.Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud,and increase the surface roughness and specific surface area.At the optimal temperature of 700°C,the addition of calcined red mud still leads to a decrease in mortar strength,but its activity index and flexural coefficient increase by 16.2%and 11.9%with respect to uncalcined red mud,reaching values of 0.826 and 0.974,respectively.Compared with the control group,the synergistic activation of calcined red mud with slag can increase the compressive and flexural strength of the mortar by 12.9%and 1.5%,reaching 8.7 and 62.4 MPa,respectively.Correspondingly,the activity index and flexural coefficient of the calcined RM and GGBS(Ground Granulated Blast furnace Slag)mixtures also increase to 1.015 and 1.130,respectively.展开更多
Mud is a ubiquitous building material in Nigeria,perhaps this is the reason why it is hardly seen as the outright building material that it is.The most popular contribution of mud to Nigerian architecture can only be ...Mud is a ubiquitous building material in Nigeria,perhaps this is the reason why it is hardly seen as the outright building material that it is.The most popular contribution of mud to Nigerian architecture can only be seen in the ancient traditional huts all over the country.Although still a building material in the suburbs of the country,mud is seen as a relic of the past,a symbol of a primitive tale of Nigerian building construction.The primary effort here is to redefine mud as a“skin”with infinite possibilities of imagery and texture,rather than its typical application as a wall in Nigerian architecture.Mud is attempted to be expressed via a new geometric vocabulary by re-evaluating its surreptitious properties including its ability to behave like a formally defined NURBS(non-uniform rational basis spline)surface.The properties of mud and clay are unconventionally simulated in computer modelling and analysis software to understand the ways in which it can be optimized for advanced building applications.Streamlined calculations and algorithmic calculations serve as tools to discover the NURBS-propensity of mud.This provides a whole new low-cost construction opportunity for the building of irregularly flowing structures.展开更多
Research Background: The marketing of cosmetic products derived from Dead Sea (DS) mud has undergone significant evolution, transforming from simple souvenirs into a large-scale cosmetic industry offering a diverse ar...Research Background: The marketing of cosmetic products derived from Dead Sea (DS) mud has undergone significant evolution, transforming from simple souvenirs into a large-scale cosmetic industry offering a diverse array of products. DS mud is utilized both as pure mud for home spa treatments and as an active ingredient in cosmetic and cosmeceutical formulations. Its global appeal is largely due to its natural, health-oriented image, which aligns with consumer preferences and provides assurance regarding its use in skincare. Research Objectives: This review examines the published data related to the rationale for formulating DS mud in cosmetics, the biological and cosmetic effects of DS mud on the skin, and the speculated bio-mechanisms underlying these effects. Methods: We screened relevant literature on DS mud collected from the shores of the Dead Sea in Jordan and Israel. Publications on mineral muds excavated in different locations around the globe, as well as studies on the biological mechanisms of other DS minerals, were also reviewed as indications and supportive recommendations. Summarizing the vast collected data into a comprehensive review was undertaken to expose readers to the various aspects of DS mud in cosmetics. Results: The primary reason for formulating DS mud in skincare products is its deep cleansing and skin detoxification properties. Consequently, it is often incorporated into rinse-off masks, soaps, and scrubbing products. Additionally, DS mud is used in leave-on products and sheet masks. Cosmeceutical applications of DS mud, recommended for various skin conditions, offer complementary treatments to improve the quality of life for people with skin diseases. The physicochemical and biological effects of DS mud are driven by its rich mineral ion composition, including magnesium, calcium, sodium, potassium, zinc, and strontium—elements known to improve skin barrier function, enhance hydration, and reduce inflammation. The high salt concentration induces moderate ionic osmotic stress, stimulating cellular growth and hydration pathways. Moreover, DS mud’s anti-microbial properties further contribute to its therapeutic potential. Ongoing innovations in formulation techniques continue to expand the applications of DS mud, including blending it with other active ingredients, developing novel application methods, and refining manufacturing processes to improve product quality and efficacy. Conclusions: DS mud remains a valuable ingredient in modern skincare due to its rich mineral content and therapeutic properties. Ongoing research and technological advancements promise further innovations, reinforcing its status as a natural and effective component in the global cosmetics industry.展开更多
In recent years,the development and construction of island reefs have been flourishing.Due to the remoteness of island reefs from the mainland,the scarcity of building materials,and the high transportation costs,it is...In recent years,the development and construction of island reefs have been flourishing.Due to the remoteness of island reefs from the mainland,the scarcity of building materials,and the high transportation costs,it is imperative to use local marine resources,and the potential value and status of coral mud on island reefs,which is formed by the remains of corals and other biological entities,is becoming increasingly prominent.Utilization and optimization of natural resources on island reefs have become a brand-new research direction and challenge.This article mainly focuses on the development of a new type of green engineering material,coral mud,for use in building surface layers.Thickness effects,PVA fiber(vinylon staple fiber)modification,and HPMC(Hydroxypropyl Methyl Cellulose)adhesive modification are taken into consideration.Through laboratory tests and image processing technology,fractal theory,and electron microscopy experiments,the macro-meso-microscopic multi-scale cracking rules of the coral mud surface layer and the optimization modification rules of PVA fibers and HPMC adhesives are revealed.The results demonstrate that the performance of the coral mud surface layer is superior to that of the kaolin surface layer,and the 10 mm thickness performs better than the 5 mm and 20 mm thicknesses.As the thickness of the coral mud surface layer increases,the contact between coral mud particles becomes denser,the scale of surface micro-cracks decreases,and the number of micro-pores decreases.PVA fibers can effectively inhibit the further development of macro and micro cracks and play a good bridging role.There is a bonding and adhesion relationship between coral mud and PVA fibers,and they have a good synergistic effect in inhibiting macro and mesoscopic cracks.With the increase in HPMC adhesive content,the number of micro-cracks and the scale of micro-cracks decrease accordingly,and the structure and performance of the coral mud surface layer are further improved.Overall,PVA fibers are more effective than HPMC adhesives in inhibiting the cracking of the coral mud surface layer.This provides valuable guidance for the development and application of coral mud in wall surface materials.展开更多
Managing server lost circulation is a major challenge of drilling operation in naturally fractured formations and it causes much nonproductive rig time. When encountered with loss, the fracture aperture intersecting t...Managing server lost circulation is a major challenge of drilling operation in naturally fractured formations and it causes much nonproductive rig time. When encountered with loss, the fracture aperture intersecting the wellbore is not well-identified in time, which has a significant impact on the decision of drilling operation and the undesired result of loss curing. Therefore, the onset of fracture is identified in a timely manner and evaluated comprehensively to formulate an appropriate strategy over time. However, the mud loss date, which is the primary source of information retrieved from the drilling process, was not properly used in real-time prediction of fracture aperture. This article provides a detailed mathematical study to discuss the mechanism of mud invasion in the near-wellbore region and prediction of fracture aperture. The fracture aperture can be calculated from mud-loss data by solving a cubic equation with input parameters given by the well radius, the overpressure ratio, and the maximum mud-loss volume. It permits the proper selection of loss-circulation material (LCM) with respect to particle size distribution and fiber usage. The case study illustrates the applicability of this methodology with a discussion on LCM particle distribution in different scenarios and the result demonstrates the outcome of inappropriate LCM usage and the advantages of the novel fiber-based LCM treatment.展开更多
Oil saturation was an important parameter of reservoir evaluation, which had important guiding significance for oilfield development. In this paper, the oil saturation of tight oil in G area was studied, and the origi...Oil saturation was an important parameter of reservoir evaluation, which had important guiding significance for oilfield development. In this paper, the oil saturation of tight oil in G area was studied, and the original oil saturation of the study area was studied by using the comprehensive experimental method. The original oil saturation of tight oil in the study area was determined by J function method, rock electricity method and oil-based mud coring method. The results showed that through the comparison of three experimental methods, it could be concluded that the J function method leads to the low value of oil saturation in the study area. The oil-based mud coring method was more suitable for the determination of oil saturation in this area than the other two methods because it needs to meet too many conditions and the calculation results were also low. G area was located in Qili Village, Ordos Basin.展开更多
A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mi...A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mixed up with cement at different mass fractions of 2%-8% and their properties were investigated. Based on the textural characteristics and strength, the granular red mud with 2% addition of cement maintaining for 6 d is identified to have better properties. The batch adsorption experiments for adsorption of Cd2+ ions from solution were performed at 30, 40 and 50 °C at different initial concentrations under the condition of constant pH of 6.5. The equilibrium adsorption was found to increase with the increase of temperature during the adsorption process. Langmuir adsorption isotherm model was found to match the experimental adsorption isotherm better. The kinetics of adsorption was modeled using a pseudo second order kinetic model and the model parameters were estimated.展开更多
The recovery of titanium with citric acid in sulfuric acid from red mud was put forward to strengthen acid leaching efficiency.The main factors on the recovery of titanium such as citric acid addition,sulfuric acid co...The recovery of titanium with citric acid in sulfuric acid from red mud was put forward to strengthen acid leaching efficiency.The main factors on the recovery of titanium such as citric acid addition,sulfuric acid concentration,leaching temperature,time and liquid-to-solid ratio were studied.The kinetics analysis of titanium leaching from red mud was deeply investigated.The results show that the citric acid could increase the recovery of titanium and decrease the consumption of sulfuric acid.The recovery of titanium was increased from 65% to 82% and the consumption of sulfuric acid was decreased by about 30% with using 5% citric acid.The dissolution of perovskite,brookite,and hematite in red mud could easily be dissolved using citric acid.The acid leaching process was controlled by internal diffusion of shrinking core model(SCM) and the correlation coefficient was above 0.98.The apparent rate constant was increased from 0.0012 to 0.0019 with 5% citric acid at 90 °C.The apparent activation energy of titanium leaching decreased from 39.77 k J/mol to 34.61 k J/mol with 5% citric acid.展开更多
基金Funded by the National Natural Science Foundation of China(No.52378213)the Technology Development Project(No.20201902977180010) of CABR Technology Co.,Ltd。
文摘To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.
基金supported by the Cooperation Project of Luzhou Laojiao Co.,Ltd.Sichuan University (21H0997)。
文摘The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.
基金the Scientific research and technology development project of Petro China(2021DJ5303)。
文摘Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.
基金supported by the Key R&D projects in Xinjiang (2022B01042)Research and Innovation Team Cultivation Plan of Yili Normal University (#CXZK2021002)。
文摘Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
基金the financially supported by the National Natural Science Foundation of China(Grant No.52104013)the China Postdoctoral Science Foundation(Grant No.2022T150724)。
文摘Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.
基金support by the financial support of the National Nature Science Foundation of China(No.52274001,No.52074018)China Petrochemical Corporation(No.p21069)The financial support of Fundamental Research Funds for the Central Universities(buctrc202017)。
文摘The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.
基金Supported by the Special Supporting Program for Cultivating High level Talents in Guangdong Province(No.2019 BT02H594)the National Natural Science Foundation of China(NSFC)(Nos.U1901217,91855101,42306239)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515011836,2021 A 1515110851)The sub bottom profiling,multi-beam sounding data and benthal samples were collected onboard R/Vs Jiageng and Dongfanghong-3 implementing the open research cruises(Nos.NORC 2017-05,NORC 2017-06,NORC 2018-06,NORC 2019-05,NORC 2019-06,NORC 2020-05,NORC 2020-06)NSFC Shiptime Sharing Project(Nos.41649905,41649906,41749906,41949905,41949906,41949905,41949906)。
文摘Situated between the petroliferous Cenozoic Zhujiang(Pearl)River Mouth Basin and the mud volcano-rich Mesozoic Dongsha Basin in the middle sector of the northern South China Sea,the Weitan Banks area has been previously mapped as a basement high that is composed of Mesozoic magmatic rocks.In this study,we present several favorable indicators for petroleum geology that were detected from geophysical profiling and benthic sampling in the area.A conspicuous hill was discovered,named“Zhongwei Hill”,~80 m high above the~340 m deep seafloor and~1 km broad,in a depression with more than 7 km thick sedimentary strata.The Zhongwei Hill was seismically imaged with a mushroom-shaped structure and containing a cake-like crown,fluid flow pipes,and an~10 km broad anticline at depth.Thus,the hill represents a source-plumbing-eruption system.Shallow gas zones linked to deep fracture were found at or near the hill.Stratigraphic correlation indicates that the deep strata comprise the Jurassic and Paleogene strata,the major hosts of hydrocarbon source rocks.In addition to the hill,there are number of mounds from which three bottom water samples were collected and the samples are rich in dissolved methane with concentrations high up to~900 nmol/L,much higher than the background level(0.5–2 nmol/L).The benthic samples are rich in coarse sediment clastics,authigenic carbonate nodules,and deep-water habitats likely feeding on methanotrophic community.Given these observations and the context,we propose that the Zhongwei Hill represents a mud volcano,likely thermally driven,that seeps methane from Jurassic and Paleogene source layers,thus poses a favorable clue for significant hydrocarbon generation capacity in transitional zone of the Zhujiang River Mouth Basin and the Dongsha Basin.
基金National Natural Science Foundation of China(21706172)Shanxi Province Natural Science Foundation(202203021221069 and 20210302123167).
文摘CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.
基金supported by CNPC-CZU Innovation Alliancesupported by the Program of Polar Drilling Environmental Protection and Waste Treatment Technology (2022YFC2806403)。
文摘In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.
基金“Key Science and Technology Project of Guangxi Department of Communications-Technology Development and Application of Cement Red Clay Stabilized Sea Sand Semi-Rigid Subgrade”(Grant:Gui Jiaotong 2020-No.150)“Key Science and Technology Project of Guangxi Department of Transportation-Key Technologies and Application Demonstrations for the Multi-Solid Waste Co-Processing of Bayer Red Mud in Large-Scale Road Construction”(Grant:Gui Jiaotong 2021-No.148).
文摘Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy.The performance of calcined red mud was determined through mortar strength tests.Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud,and increase the surface roughness and specific surface area.At the optimal temperature of 700°C,the addition of calcined red mud still leads to a decrease in mortar strength,but its activity index and flexural coefficient increase by 16.2%and 11.9%with respect to uncalcined red mud,reaching values of 0.826 and 0.974,respectively.Compared with the control group,the synergistic activation of calcined red mud with slag can increase the compressive and flexural strength of the mortar by 12.9%and 1.5%,reaching 8.7 and 62.4 MPa,respectively.Correspondingly,the activity index and flexural coefficient of the calcined RM and GGBS(Ground Granulated Blast furnace Slag)mixtures also increase to 1.015 and 1.130,respectively.
文摘Mud is a ubiquitous building material in Nigeria,perhaps this is the reason why it is hardly seen as the outright building material that it is.The most popular contribution of mud to Nigerian architecture can only be seen in the ancient traditional huts all over the country.Although still a building material in the suburbs of the country,mud is seen as a relic of the past,a symbol of a primitive tale of Nigerian building construction.The primary effort here is to redefine mud as a“skin”with infinite possibilities of imagery and texture,rather than its typical application as a wall in Nigerian architecture.Mud is attempted to be expressed via a new geometric vocabulary by re-evaluating its surreptitious properties including its ability to behave like a formally defined NURBS(non-uniform rational basis spline)surface.The properties of mud and clay are unconventionally simulated in computer modelling and analysis software to understand the ways in which it can be optimized for advanced building applications.Streamlined calculations and algorithmic calculations serve as tools to discover the NURBS-propensity of mud.This provides a whole new low-cost construction opportunity for the building of irregularly flowing structures.
文摘Research Background: The marketing of cosmetic products derived from Dead Sea (DS) mud has undergone significant evolution, transforming from simple souvenirs into a large-scale cosmetic industry offering a diverse array of products. DS mud is utilized both as pure mud for home spa treatments and as an active ingredient in cosmetic and cosmeceutical formulations. Its global appeal is largely due to its natural, health-oriented image, which aligns with consumer preferences and provides assurance regarding its use in skincare. Research Objectives: This review examines the published data related to the rationale for formulating DS mud in cosmetics, the biological and cosmetic effects of DS mud on the skin, and the speculated bio-mechanisms underlying these effects. Methods: We screened relevant literature on DS mud collected from the shores of the Dead Sea in Jordan and Israel. Publications on mineral muds excavated in different locations around the globe, as well as studies on the biological mechanisms of other DS minerals, were also reviewed as indications and supportive recommendations. Summarizing the vast collected data into a comprehensive review was undertaken to expose readers to the various aspects of DS mud in cosmetics. Results: The primary reason for formulating DS mud in skincare products is its deep cleansing and skin detoxification properties. Consequently, it is often incorporated into rinse-off masks, soaps, and scrubbing products. Additionally, DS mud is used in leave-on products and sheet masks. Cosmeceutical applications of DS mud, recommended for various skin conditions, offer complementary treatments to improve the quality of life for people with skin diseases. The physicochemical and biological effects of DS mud are driven by its rich mineral ion composition, including magnesium, calcium, sodium, potassium, zinc, and strontium—elements known to improve skin barrier function, enhance hydration, and reduce inflammation. The high salt concentration induces moderate ionic osmotic stress, stimulating cellular growth and hydration pathways. Moreover, DS mud’s anti-microbial properties further contribute to its therapeutic potential. Ongoing innovations in formulation techniques continue to expand the applications of DS mud, including blending it with other active ingredients, developing novel application methods, and refining manufacturing processes to improve product quality and efficacy. Conclusions: DS mud remains a valuable ingredient in modern skincare due to its rich mineral content and therapeutic properties. Ongoing research and technological advancements promise further innovations, reinforcing its status as a natural and effective component in the global cosmetics industry.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.2022CDJQY-012).
文摘In recent years,the development and construction of island reefs have been flourishing.Due to the remoteness of island reefs from the mainland,the scarcity of building materials,and the high transportation costs,it is imperative to use local marine resources,and the potential value and status of coral mud on island reefs,which is formed by the remains of corals and other biological entities,is becoming increasingly prominent.Utilization and optimization of natural resources on island reefs have become a brand-new research direction and challenge.This article mainly focuses on the development of a new type of green engineering material,coral mud,for use in building surface layers.Thickness effects,PVA fiber(vinylon staple fiber)modification,and HPMC(Hydroxypropyl Methyl Cellulose)adhesive modification are taken into consideration.Through laboratory tests and image processing technology,fractal theory,and electron microscopy experiments,the macro-meso-microscopic multi-scale cracking rules of the coral mud surface layer and the optimization modification rules of PVA fibers and HPMC adhesives are revealed.The results demonstrate that the performance of the coral mud surface layer is superior to that of the kaolin surface layer,and the 10 mm thickness performs better than the 5 mm and 20 mm thicknesses.As the thickness of the coral mud surface layer increases,the contact between coral mud particles becomes denser,the scale of surface micro-cracks decreases,and the number of micro-pores decreases.PVA fibers can effectively inhibit the further development of macro and micro cracks and play a good bridging role.There is a bonding and adhesion relationship between coral mud and PVA fibers,and they have a good synergistic effect in inhibiting macro and mesoscopic cracks.With the increase in HPMC adhesive content,the number of micro-cracks and the scale of micro-cracks decrease accordingly,and the structure and performance of the coral mud surface layer are further improved.Overall,PVA fibers are more effective than HPMC adhesives in inhibiting the cracking of the coral mud surface layer.This provides valuable guidance for the development and application of coral mud in wall surface materials.
文摘Managing server lost circulation is a major challenge of drilling operation in naturally fractured formations and it causes much nonproductive rig time. When encountered with loss, the fracture aperture intersecting the wellbore is not well-identified in time, which has a significant impact on the decision of drilling operation and the undesired result of loss curing. Therefore, the onset of fracture is identified in a timely manner and evaluated comprehensively to formulate an appropriate strategy over time. However, the mud loss date, which is the primary source of information retrieved from the drilling process, was not properly used in real-time prediction of fracture aperture. This article provides a detailed mathematical study to discuss the mechanism of mud invasion in the near-wellbore region and prediction of fracture aperture. The fracture aperture can be calculated from mud-loss data by solving a cubic equation with input parameters given by the well radius, the overpressure ratio, and the maximum mud-loss volume. It permits the proper selection of loss-circulation material (LCM) with respect to particle size distribution and fiber usage. The case study illustrates the applicability of this methodology with a discussion on LCM particle distribution in different scenarios and the result demonstrates the outcome of inappropriate LCM usage and the advantages of the novel fiber-based LCM treatment.
文摘Oil saturation was an important parameter of reservoir evaluation, which had important guiding significance for oilfield development. In this paper, the oil saturation of tight oil in G area was studied, and the original oil saturation of the study area was studied by using the comprehensive experimental method. The original oil saturation of tight oil in the study area was determined by J function method, rock electricity method and oil-based mud coring method. The results showed that through the comparison of three experimental methods, it could be concluded that the J function method leads to the low value of oil saturation in the study area. The oil-based mud coring method was more suitable for the determination of oil saturation in this area than the other two methods because it needs to meet too many conditions and the calculation results were also low. G area was located in Qili Village, Ordos Basin.
基金Project (51264022) supported by the National Natural Science Foundation of China
文摘A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mixed up with cement at different mass fractions of 2%-8% and their properties were investigated. Based on the textural characteristics and strength, the granular red mud with 2% addition of cement maintaining for 6 d is identified to have better properties. The batch adsorption experiments for adsorption of Cd2+ ions from solution were performed at 30, 40 and 50 °C at different initial concentrations under the condition of constant pH of 6.5. The equilibrium adsorption was found to increase with the increase of temperature during the adsorption process. Langmuir adsorption isotherm model was found to match the experimental adsorption isotherm better. The kinetics of adsorption was modeled using a pseudo second order kinetic model and the model parameters were estimated.
基金Project(B2014-012)supported by the Doctoral Foundation from Henan Polytechnic University,China
文摘The recovery of titanium with citric acid in sulfuric acid from red mud was put forward to strengthen acid leaching efficiency.The main factors on the recovery of titanium such as citric acid addition,sulfuric acid concentration,leaching temperature,time and liquid-to-solid ratio were studied.The kinetics analysis of titanium leaching from red mud was deeply investigated.The results show that the citric acid could increase the recovery of titanium and decrease the consumption of sulfuric acid.The recovery of titanium was increased from 65% to 82% and the consumption of sulfuric acid was decreased by about 30% with using 5% citric acid.The dissolution of perovskite,brookite,and hematite in red mud could easily be dissolved using citric acid.The acid leaching process was controlled by internal diffusion of shrinking core model(SCM) and the correlation coefficient was above 0.98.The apparent rate constant was increased from 0.0012 to 0.0019 with 5% citric acid at 90 °C.The apparent activation energy of titanium leaching decreased from 39.77 k J/mol to 34.61 k J/mol with 5% citric acid.