Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the an...An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.展开更多
To represent model uncertainties more comprehensively,a stochastically perturbed parameterization(SPP)scheme consisting of temporally and spatially varying perturbations of 18 parameters in the microphysics,convection...To represent model uncertainties more comprehensively,a stochastically perturbed parameterization(SPP)scheme consisting of temporally and spatially varying perturbations of 18 parameters in the microphysics,convection,boundary layer,and surface layer parameterization schemes,as well as the stochastically perturbed parameterization tendencies(SPPT)scheme,and the stochastic kinetic energy backscatter(SKEB)scheme,is applied in the Global and Regional Assimilation and Prediction Enhanced System-Regional Ensemble Prediction System(GRAPES-REPS)to evaluate and compare the general performance of various combinations of multiple stochastic physics schemes.Six experiments are performed for a summer month(1-30 June 2015)over China and multiple verification metrics are used.The results show that:(1)All stochastic experiments outperform the control(CTL)experiment,and all combinations of stochastic parameterization schemes perform better than the single SPP scheme,indicating that stochastic methods can effectively improve the forecast skill,and combinations of multiple stochastic parameterization schemes can better represent model uncertainties;(2)The combination of all three stochastic physics schemes(SPP,SPPT,and SKEB)outperforms any other combination of two schemes in precipitation forecasting and surface and upper-air verification to better represent the model uncertainties and improve the forecast skill;(3)Combining SKEB with SPP and/or SPPT results in a notable increase in the spread and reduction in outliers for the upper-air wind speed.SKEB directly perturbs the wind field and therefore its addition will greatly impact the upper-air wind-speed fields,and it contributes most to the improvement in spread and outliers for wind;(4)The introduction of SPP has a positive added value,and does not lead to large changes in the evolution of the kinetic energy(KE)spectrum at any wavelength;(5)The introduction of SPPT and SKEB would cause a 5%-10%and 30%-80%change in the KE of mesoscale systems,and all three stochastic schemes(SPP,SPPT,and SKEB)mainly affect the KE of mesoscale systems.This study indicates the potential of combining multiple stochastic physics schemes and lays a foundation for the future development and design of regional and global ensembles.展开更多
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
基金National Natural Science Foundation of China(41405104)Specialized Project for Public Welfare Industries(Meteorological Sector)(GYHY201306004)+2 种基金Guangdong Science and Technology Planning Project(2012A061400012)Project of Guangdong Provincial Meteorological Bureau for Science and Technology(2013A04)Science and Technology Plan for the 12th Five-Year of Social and Economic Development(2012BAC22B00)
文摘An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.
基金National Key Research and Development(R&D)Program of China,(Grant No.2018YFC1507405).
文摘To represent model uncertainties more comprehensively,a stochastically perturbed parameterization(SPP)scheme consisting of temporally and spatially varying perturbations of 18 parameters in the microphysics,convection,boundary layer,and surface layer parameterization schemes,as well as the stochastically perturbed parameterization tendencies(SPPT)scheme,and the stochastic kinetic energy backscatter(SKEB)scheme,is applied in the Global and Regional Assimilation and Prediction Enhanced System-Regional Ensemble Prediction System(GRAPES-REPS)to evaluate and compare the general performance of various combinations of multiple stochastic physics schemes.Six experiments are performed for a summer month(1-30 June 2015)over China and multiple verification metrics are used.The results show that:(1)All stochastic experiments outperform the control(CTL)experiment,and all combinations of stochastic parameterization schemes perform better than the single SPP scheme,indicating that stochastic methods can effectively improve the forecast skill,and combinations of multiple stochastic parameterization schemes can better represent model uncertainties;(2)The combination of all three stochastic physics schemes(SPP,SPPT,and SKEB)outperforms any other combination of two schemes in precipitation forecasting and surface and upper-air verification to better represent the model uncertainties and improve the forecast skill;(3)Combining SKEB with SPP and/or SPPT results in a notable increase in the spread and reduction in outliers for the upper-air wind speed.SKEB directly perturbs the wind field and therefore its addition will greatly impact the upper-air wind-speed fields,and it contributes most to the improvement in spread and outliers for wind;(4)The introduction of SPP has a positive added value,and does not lead to large changes in the evolution of the kinetic energy(KE)spectrum at any wavelength;(5)The introduction of SPPT and SKEB would cause a 5%-10%and 30%-80%change in the KE of mesoscale systems,and all three stochastic schemes(SPP,SPPT,and SKEB)mainly affect the KE of mesoscale systems.This study indicates the potential of combining multiple stochastic physics schemes and lays a foundation for the future development and design of regional and global ensembles.