期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fault diagnosis method of hydraulic system based on fusion of neural network and D-S evidence theory 被引量:2
1
作者 LIU Bao-jie YANG Qing-wen WU Xiang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第4期368-374,共7页
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e... According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS. 展开更多
关键词 multi sensor information fusion fault diagnosis D-S evidence theory BP neural network
下载PDF
A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response
2
作者 Zhicheng Liu Long Zhao +2 位作者 Guanru Wen Peng Yuan Qiu Jin 《Structural Durability & Health Monitoring》 EI 2023年第6期541-555,共15页
The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learnin... The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learning method provides new ideas for structural health monitoring of towers,but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning(DL).In this paper,we propose a DT-DL based tower foot displacement monitoring method,which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method.Then the vibration signal visualization and Data Transfer(DT)are used to add tower fault data samples to solve the problem of insufficient actual data quantity.Subsequently,the dynamic response test is carried out under different tower fault states,and the tower fault monitoring is carried out by the DL method.Finally,the proposed method is compared with the traditional online monitoring method,and it is found that this method can significantly improve the rate of convergence and recognition accuracy in the recognition process.The results show that the method can effectively identify the tower foot displacement state,which can greatly reduce the accidents that occurred due to the tower foot displacement. 展开更多
关键词 Tower online monitoring wind-induced response continuous wavelet transform CNN multi sensor information fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部