期刊文献+
共找到720篇文章
< 1 2 36 >
每页显示 20 50 100
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
1
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
下载PDF
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking 被引量:1
2
作者 Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期207-211,共5页
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so... Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time. 展开更多
关键词 multi-objective optimal problem multi-objective optimal evolutionary algorithm Pareto dominance tree structure dynamic space-compressed mutative operator
下载PDF
Do Search and Selection Operators Play Important Roles in Multi-Objective Evolutionary Algorithms:A Case Study 被引量:1
3
作者 Yan Zhen-yu, Kang Li-shan, Lin Guang-ming ,He MeiState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, ChinaSchool of Computer Science, UC, UNSW Australian Defence Force Academy, Northcott Drive, Canberra, ACT 2600 AustraliaCapital Bridge Securities Co. ,Ltd, Floor 42, Jinmao Tower, Shanghai 200030, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期195-201,共7页
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an... Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators. 展开更多
关键词 multi-objective evolutionary algorithm convergence property analysis search operator selection operator Markov chain
下载PDF
Economic Dispatch of Electrical Power System Based on the Multi-objective Co-evolutionary Algorithm 被引量:1
4
作者 张向锋 杨凤惠 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期652-655,共4页
It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex w... It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility. 展开更多
关键词 dispatch evolutionary NSGA distribute sorting constraints minimize uncertainty spinning verify
下载PDF
EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING
5
作者 Lei Deming Wu Zhiming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期494-497,共4页
A new representation method is first presented based on priority roles. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict... A new representation method is first presented based on priority roles. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority role. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed, in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling. 展开更多
关键词 Job shop Crowding measure Archive maintenance Fitness assignment multi-objective evolutionary algorithm
下载PDF
A Novel Quantum - inspired Multi - Objective Evolutionary Algorithm Based on Cloud Theory
6
作者 Bo Xu~1 Wang Cheng~2 Jian-Ping Yu~3 Yong Wang~4 (1.Department of Computer Science and Technology,Guangdong University of Petrochemical Technology,Maoming,Guangdong,525000) (2.Wells Fargo Bank,USA) (3.College of Mathematics and Computer Science,Hunan Normal University,Changsha,410081) (4.College of Electrical and Information Engineering,Hunan University,Changsha,410082) 《自动化博览》 2011年第S2期145-150,共6页
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the ... In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ. 展开更多
关键词 multi-objective Optimization PROBLEM Quantum-Inspired multi-objective evolutionary algorithm CLOUD Model evolutionary algorithm
下载PDF
Solving A Kind of High Complexity Multi-Objective Problems by A Fast Algorithm
7
作者 Zeng San-you, Ding Li-xin, Kang Li-shanDepartment of Computer Science,China University of GeoSciences, Wuhan 430074, Hubei, China Department of Computer Science, Zhuzhou Institute of Technology , Zhuzhou 412008, Hunan, China State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期183-188,共6页
A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to ... A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to speed up the computation. It is very suitable for solving high complexity problems, and quickly yields solutions which converge to the Pareto-optimal set with high precision and uniform distribution. Some complicated multi-objective problems are solved by the algorithm and the results show that the algorithm is not only fast but also superior to other MOGAS and MOEAs, such as the currently efficient algorithm SPEA, in terms of the precision, quantity and distribution of solutions. 展开更多
关键词 evolutionary algorithms orthogonal design multi-objective optimization Pareto-optimal set
下载PDF
Handling Multiple Objectives with Biogeography-based Optimization 被引量:3
8
作者 Hai-Ping Ma Xie-Yong Ruan Zhang-Xin Pan 《International Journal of Automation and computing》 EI 2012年第1期30-36,共7页
Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective op... Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do. 展开更多
关键词 multi-objective optimization biogeography-based optimization (BBO) evolutionary algorithms Pareto optimal nondominated sorting.
下载PDF
基于CatBoost-MOEAD的大直径泥水盾构施工多目标预测优化
9
作者 吴贤国 刘俊 +2 位作者 苏飞鸣 陈虹宇 冯宗宝 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期57-64,共8页
为有效优化盾构施工参数,实现在大直径泥水盾构掘进过程中安全、高效和节能的目标,提出分类助推(CatBoost)和基于分解的多目标进化算法(MOEAD)相结合的混合智能算法;综合考虑盾构施工参数与地质条件,以主要的盾构施工参数为研究对象,选... 为有效优化盾构施工参数,实现在大直径泥水盾构掘进过程中安全、高效和节能的目标,提出分类助推(CatBoost)和基于分解的多目标进化算法(MOEAD)相结合的混合智能算法;综合考虑盾构施工参数与地质条件,以主要的盾构施工参数为研究对象,选择地表沉降、贯入度和掘进比能为预测和控制目标;优化调控选择的盾构施工参数,并以武汉市轨道交通某号线为例,验证该混合算法的有效性。结果表明:采用CatBoost算法建立的预测模型在大直径泥水盾构上表现出来的预测性能良好,对3个控制目标的拟合精度(R 2)均达到0.9以上;预测模型的重要性排序表明:大直径泥水盾构的总推进力和推进速度对地表沉降、贯入度和掘进比能有显著影响;所提出的CatBoost-MOEAD混合智能算法对3个控制目标的优化效果明显,地表沉降、贯入度和掘进比能分别达到12.35%、7.47%和10.70%的优化幅度,并给出相应盾构施工参数的控制范围。 展开更多
关键词 大直径泥水盾构 分类助推(CatBoost) 基于分解的多目标进化算法(moeaD) 多目标优化 地表沉降
下载PDF
Modified NSGA-II for a Bi-Objective Job Sequencing Problem 被引量:1
10
作者 Susmita Bandyopadhyay 《Intelligent Information Management》 2012年第6期319-329,共11页
This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation... This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II. 展开更多
关键词 JOB SEQUENCING multi-objective evolutionary algorithm (moea) NSGA-II (Non-Dominated Sorting Genetic algorithm-II) TARDINESS DETERIORATION Cost
下载PDF
基于Epsilon-MOEA的给水系统多目标优化与决策 被引量:2
11
作者 方海恩 吕谋 +1 位作者 魏希柱 袁一星 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第12期53-57,63,共6页
给水系统优化运行是多目标优化问题,决策者需要从众多的候选方案中筛选出一个综合性能最好的方案.将多目标进化算法与多属性决策相接合,采用两阶段方法来求解供水系统的多目标优化与决策问题.首先构建供水系统的多目标优化模型,包括供... 给水系统优化运行是多目标优化问题,决策者需要从众多的候选方案中筛选出一个综合性能最好的方案.将多目标进化算法与多属性决策相接合,采用两阶段方法来求解供水系统的多目标优化与决策问题.首先构建供水系统的多目标优化模型,包括供水系统的运行费用与维护费用最小化,以及水压服务水平的最大化,运用多目标进化算法Epsilon-MOEA求解,生成Pareto解集.然后,基于信息熵方法得到属性权重,用逼近理想的排序方法(TOPSIS)进行多属性决策(MADM)研究,对Pareto最优解进行排序.算例应用表明,该方法能够对供水系统运行的多个目标进行优化,并使决策者能够从众多的候选方案中选出综合性能较好的方案. 展开更多
关键词 供水系统 优化运行 多目标进化算法 多属性决策
下载PDF
基于进化算法MOEA/D-AU的露天矿多金属多目标智能配矿研究 被引量:4
12
作者 顾清华 刘思鲁 张金龙 《有色金属(矿山部分)》 2021年第6期1-8,共8页
针对露天矿的多金属多目标配矿问题,提出了基于多目标进化算法的配矿优化方法。根据矿山实际情况,以生产成本、矿石品位偏差和矿石岩性配比偏差最小为优化目标建立了露天矿配矿优化模型;在基于分解的多目标进化算法(MOEA/D)的基础上,对... 针对露天矿的多金属多目标配矿问题,提出了基于多目标进化算法的配矿优化方法。根据矿山实际情况,以生产成本、矿石品位偏差和矿石岩性配比偏差最小为优化目标建立了露天矿配矿优化模型;在基于分解的多目标进化算法(MOEA/D)的基础上,对算法的更新过程进行了改进,利用种群与权重向量之间的空间位置关系提出了基于角度的更新策略,使算法在求解多目标问题时更好地平衡种群的多样性与收敛性;由于对选矿因素考虑不充分,无法有效提高矿石的综合回收率,建立了融合氧化率及有害物质参数的综合回收率随机森林预测模型,通过预测模型对算法得到的多组配矿结果进行筛选,获得一组更加贴合矿山实际情况的配矿计划。最后以国内某大型钼钨铜矿为例进行仿真实验,实验结果表明:该配矿计划在解决多金属多目标配矿问题时能够有效提高矿石综合利用率和企业经济效益。 展开更多
关键词 露天矿 配矿优化模型 多目标进化算法 综合回收率 随机森林 智能 钼钨铜矿 仿真实验
下载PDF
超参数自适应的MOEA/D-DE算法在翼型气动隐身优化中的应用 被引量:1
13
作者 王培君 夏露 +1 位作者 栾伟达 陈会强 《航空工程进展》 CSCD 2023年第3期50-60,共11页
MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数... MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数拥有自适应能力,得到超参数自适应的MOEA/D-DE算法——MOEA/D-DEAH算法;对MOEA/D-DEAH算法、不同超参数设置的MOEA/D-DE算法和NSGAⅡ算法进行函数测试和翼型气动隐身优化算例对比。结果表明:MOEA/D-DEAH算法性能良好,具有较强的鲁棒性,气动隐身优化效果也比其他算法更好。 展开更多
关键词 多目标优化算法 基于分解的多目标优化算法(moea/D) 超参数 灵敏度分析 气动隐身优化 差分进化算子
下载PDF
Improved MOEA/D for Dynamic Weapon-Target Assignment Problem 被引量:6
14
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期121-128,共8页
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base... Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment. 展开更多
关键词 multi-objective optimization(MOP) dynamic weapon-target assignment(DWTA) multi-objective evolutionary algorithm based on decomposition(moea/D) tabu search
下载PDF
基于MOEA/D-ARMS的无人机在线航迹规划 被引量:3
15
作者 汪瀚洋 陈亮 +1 位作者 徐海 白景波 《系统工程与电子技术》 EI CSCD 北大核心 2022年第11期3505-3514,共10页
无人机(unmanned aerial vehicle, UAV)在线航迹规划是UAV协同控制关键技术之一,在线航迹规划问题本质上是一种动态多目标优化问题。为了求解该问题,提出了一种基于自适应应答机制选择的动态多目标进化算法(multi-objective evolutionar... 无人机(unmanned aerial vehicle, UAV)在线航迹规划是UAV协同控制关键技术之一,在线航迹规划问题本质上是一种动态多目标优化问题。为了求解该问题,提出了一种基于自适应应答机制选择的动态多目标进化算法(multi-objective evolutionary algorithon based on decomposition-adaptive reaction mechanism selection, MOEA/D-ARMS)。多种应答机制构成应答机制池,以应答机制最近一次的整体表现赋予应答机制一定的奖励,并采用基于概率的方法从应答机制池中选择应答机制。MOEA/D-ARMS分别在静态环境情况、突发威胁情况、突变威胁情况和偏好改变情况下进行仿真实验。仿真结果表明,MOEA/D-ARMS可有效求解UAV在线航迹规划问题。 展开更多
关键词 无人机 航迹规划 动态多目标进化算法 自适应选择
下载PDF
Low emittance lattice optimization using a multi-objective evolutionary algorithm 被引量:1
16
作者 高巍巍 王琳 +1 位作者 李为民 何多慧 《Chinese Physics C》 SCIE CAS CSCD 2011年第9期859-864,共6页
A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice... A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. 展开更多
关键词 EMITTANCE multi-objective evolutionary algorithm LATTICE
原文传递
Data Structures in Multi-Objective Evolutionary Algorithms 被引量:1
17
作者 Najwa Altwaijry Mohamed El Bachir Menai 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第6期1197-1210,共14页
Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective ev... Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are considered an attractive approach for solving MOPs~ since they are able to explore several parts of the Pareto front simultaneously. The data structures for storing and updating populations and non-dominated solutions (archives) may affect the efficiency of the search process. This article describes data structures used in MOEAs for realizing populations and archives in a comparative way, emphasizing their computational requirements and general applicability reported in the original work. 展开更多
关键词 multi-objective evolutionary algorithm data structure Pareto front ARCHIVE POPULATION
原文传递
A new evolutionary algorithm for constrained optimization problems
18
作者 王东华 刘占生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期8-12,共5页
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ... To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems. 展开更多
关键词 constrained optimization problems evolutionary algorithm POPULATION-BASED elite strategy single and multi-objective optimization
下载PDF
基于NSGA-Ⅱ算法的局域野战微电网优化配置
19
作者 叶炎峰 明梦君 雷洪涛 《系统工程与电子技术》 EI CSCD 北大核心 2024年第11期3800-3806,共7页
为满足新时代局部军事行动中的电力保障需求,提出一种基于分布式发电供应与发电车机动电能补充的新型局域野战微电网系统。通过分析任务需求、军事环境,以及系统资源配置需求,构建局域野战微电网优化配置模型。与一般民用微电网模型相比... 为满足新时代局部军事行动中的电力保障需求,提出一种基于分布式发电供应与发电车机动电能补充的新型局域野战微电网系统。通过分析任务需求、军事环境,以及系统资源配置需求,构建局域野战微电网优化配置模型。与一般民用微电网模型相比,该模型着重考虑了电力供应及时性、能源保障稳定性、抗毁伤性等方面。针对所构建的模型,基于非支配排序遗传算法Ⅱ(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)框架设计了求解算法,加入了精英保留机制及军事决策者偏好因素。实验结果表明,局域野战微电网优化配置模型符合军事行动实际,求解算法具有较好的快速搜索和全局寻优能力。 展开更多
关键词 局域野战 微电网 多目标 进化算法
下载PDF
基于改进MOEA/D的模糊柔性作业车间调度算法
20
作者 郑锦灿 邵立珍 雷雪梅 《计算机工程》 CAS CSCD 北大核心 2024年第6期336-345,共10页
针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。... 针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。该算法基于机器和工序两层编码并采用混合的初始化策略提高初始种群的质量,利用插入式贪婪解码策略对机器的选择进行解码,缩短总加工时间;采用基于邻域和外部存档的选择操作结合改进的交叉变异算子进行种群更新,提高搜索效率;设置邻域搜索的启动条件,并基于4种邻域动作进行变邻域搜索,提高局部搜索能力;通过田口实验设计方法研究关键参数对算法性能的影响,同时得到算法的最优性能参数。在Xu 1~Xu 2、Lei 1~Lei 4和Remanu 1~Remanu 4测试集上将所提算法与其他算法进行对比,结果表明,IMOEA/D算法的解集数量和目标函数值均较优,在Lei 2算例获得的解集个数为对比算法的2倍以上。 展开更多
关键词 模糊柔性作业车间调度问题 基于分解的多目标进化算法 混合初始化 选择策略 邻域搜索
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部