This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for...This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an...Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.展开更多
It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex w...It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.展开更多
A new representation method is first presented based on priority roles. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict...A new representation method is first presented based on priority roles. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority role. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed, in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.展开更多
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the ...In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ.展开更多
A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to ...A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to speed up the computation. It is very suitable for solving high complexity problems, and quickly yields solutions which converge to the Pareto-optimal set with high precision and uniform distribution. Some complicated multi-objective problems are solved by the algorithm and the results show that the algorithm is not only fast but also superior to other MOGAS and MOEAs, such as the currently efficient algorithm SPEA, in terms of the precision, quantity and distribution of solutions.展开更多
Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective op...Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.展开更多
This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation...This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.展开更多
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base...Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.展开更多
A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice...A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure.展开更多
Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective ev...Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are considered an attractive approach for solving MOPs~ since they are able to explore several parts of the Pareto front simultaneously. The data structures for storing and updating populations and non-dominated solutions (archives) may affect the efficiency of the search process. This article describes data structures used in MOEAs for realizing populations and archives in a comparative way, emphasizing their computational requirements and general applicability reported in the original work.展开更多
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ...To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.展开更多
文摘This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.13YZ139)Climbing Peak Discipline Project of Shanghai Dianji University,China(No.15DFXK01)
文摘It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.
基金This project is supported by National Natural Science Foundation of China(No.60574049, No.70071017).
文摘A new representation method is first presented based on priority roles. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority role. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed, in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.
基金Supported by the National Natural Science Foundation of China under Grant No.60903168the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.10B062Guangdong University of Petrochemical Technology Youth innovative personnel training project(NO 2010YC09)
文摘In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ.
基金Supported by the National Natural Science Foundation of China(60204001,70071042,60073043,60133010)and Youth Chengguang Project of Science and Technology of Wuhan City(20025001002)
文摘A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to speed up the computation. It is very suitable for solving high complexity problems, and quickly yields solutions which converge to the Pareto-optimal set with high precision and uniform distribution. Some complicated multi-objective problems are solved by the algorithm and the results show that the algorithm is not only fast but also superior to other MOGAS and MOEAs, such as the currently efficient algorithm SPEA, in terms of the precision, quantity and distribution of solutions.
基金supported by Zhejiang Provincial Natural Science Foundation of China (No.Y1090866)supported by Dan Simon and Dawei Du of Cleveland State University, and Jeff Abell of General Motors, whose ideas were instrumental in the development of this research
文摘Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.
文摘This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.
文摘Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.
基金Supported by National Natural Science Foundation of China (10875127,10979045)
文摘A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure.
基金supported by the Research Center of College of Computer and Information Sciences,King Saud University,Saudi Arabia
文摘Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are considered an attractive approach for solving MOPs~ since they are able to explore several parts of the Pareto front simultaneously. The data structures for storing and updating populations and non-dominated solutions (archives) may affect the efficiency of the search process. This article describes data structures used in MOEAs for realizing populations and archives in a comparative way, emphasizing their computational requirements and general applicability reported in the original work.
文摘To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.