In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected...In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected by biotic and abiotic constraints. Among those constraints, striga has a high impact on yield. In fact, to survive, farmers are growing their local preferred sorghum varieties wish is highly sensible to the weed. Striga management is a challenge that requires a permanent solution. In addition, the development of high-yielding Striga resistant genotypes will be appreciated by farmers. The development of striga resistance will be based on the breeding population performances under farmer’s diverse environmental conditions adaptation. The main objective of this study is to evaluate two breeding populations for striga resistance in two different environments at Boulke and Dibissou in Tahoua region, to identify the early and high-yielding striga tolerant genotypes under natural infestation.展开更多
BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate th...BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate the impact of patient demographic and clinical characteristics on MDRO acquisition,as well as the impact of MDRO acquisition on intensive care unit(ICU)and hospital length of stay,and on ICU mortality and 1-year mortality post heart transplantation.METHODS This retrospective cohort study analyzed 98 consecutive heart transplant patients over a ten-year period(2013-2022)in a single transplantation center.Data was collected regarding MDROs commonly encountered in critical care.RESULTS Among the 98 transplanted patients(70%male),about a third(32%)acquired or already harbored MDROs upon transplantation(MDRO group),while two thirds did not(MDRO-free group).The prevalent MDROs were Acinetobacter baumannii(14%),Pseudomonas aeruginosa(12%)and Klebsiella pneumoniae(11%).Compared to MDRO-free patients,the MDRO group was characterized by higher body mass index(P=0.002),higher rates of renal failure(P=0.017),primary graft dysfunction(10%vs 4.5%,P=0.001),surgical re-exploration(34%vs 14%,P=0.017),mechanical circulatory support(47%vs 26%P=0.037)and renal replacement therapy(28%vs 9%,P=0.014),as well as longer extracorporeal circulation time(median 210 vs 161 min,P=0.003).The median length of stay was longer in the MDRO group,namely ICU stay was 16 vs 9 d in the MDRO-free group(P=0.001),and hospital stay was 38 vs 28 d(P=0.006),while 1-year mortality was higher(28%vs 7.6%,log-rank-χ2:7.34).CONCLUSION Following heart transplantation,a predominance of Gram-negative MDROs was noted.MDRO acquisition was associated with higher complication rates,prolonged ICU and total hospital stay,and higher post-transplantation mortality.展开更多
Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption,...Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.展开更多
Objective: To evaluate the spread of Multidrug-Resistant (MDR) bacterial infections in Bukavu hospitals and test antimicrobial susceptibility patterns of some isolates to usual marketed antibiotics. Methods: The preva...Objective: To evaluate the spread of Multidrug-Resistant (MDR) bacterial infections in Bukavu hospitals and test antimicrobial susceptibility patterns of some isolates to usual marketed antibiotics. Methods: The prevalence of MDR strains was determined by using general antimicrobial susceptibility data collected from 3 hospital laboratories. The susceptibility of some isolates to usual antibiotics was processed by agar diffusion method with standard E. coli ATCC8739 and standard antibiotics discs as controls. The tested antibiotics were ampicillin, ceftriaxone, gentamicin, chloramphenicol and ciprofloxacin. Results: At the 3 hospitals, 758 tests were realized in urine, pus, stool, FCV, blood, LCR, split and FU specimens;46 strains were unidentified and 712 strains were identified. Of 712 identified strains, 223 (31.4%) were MDR or XDR strains including Escherichia coli, Klebsiella pneumoniae, Enterobacter, Proteus mirabilis, Salmonella enterica, Pseudomonas aeruginosa, Citrobacter freundii, Morganella morganii, Enterococcus faecalis and E. faecium, Neisseria gonorrohoae, Staphylococcus aureus, coagulase-negative, staphylococci, Streptococcus pneumoniae and Streptococcus pyogenes. Of the infected patients, 36 (21.5%) children were under 16 years and 188 (78.5%) adults were predominately women (58.5%). The susceptibility test showed that all strains but S. aureus were resistant to ampicillin and amoxicillin and ciprofloxacin. Gentamicin, ceftriaxone, and chloramphenicol remain partially active (27% - 80%) against P. mirabilis, E. coli and P. aeruginosa. The resistance is more likely related to strain mutation than to pharmaceutical quality of the antibiotics prescribed. Conclusion: Both data from hospital laboratories and in vitro post-testing findings confirmed the ongoing elevated prevalence of MDR strains in Bukavu. The causes of antibiotic misuse and socio-economic determinants of the phenomenon of resistance should be scrutinized in order to take adequate strategies in the prospective of establishing an effective control system against this threat to overall health. The results of this work on MDR profiles have various implications for the management of infectious diseases. It provides indicators for the surveillance of antimicrobial resistance, practical guidelines for antibiotic susceptibility testing in biomedical laboratories, and guidance for antibiotic therapy.展开更多
PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T...PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T3,and T4)in transgenic maize germplasms(S3002 and 349)containing the bivalent genes(insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1)and their corresponding wild type.Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations;q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots,stems,and leaves of tested maize plants.In addition,S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type.Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit.These findings could be exploited for improving other cultivated maize varieties.展开更多
Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal...Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.展开更多
Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We condu...Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We conducted a retrospective cohort study of 42 patients who were diagnosed with GDM and hospitalized in our hospital during the period from January 2017 to December 2021 and another 42 patients who had normal pregnancy during the same period by collecting their clinical data.We analyzed their serum microRNA expression profiles and miR-372-3p levels to study the relationship between GDM and insulin resistance.Results:The relative expression of miR-372-3p in the serum of patients in the GDM group was significantly higher than that of patients in the control group,but the GLUT 4 level of the GDM group was significantly lower than that of the control group(P<0.05).Compared with the control group,the GDM group had significantly higher levels of fasting blood glucose(FBG),fasting insulin(FINS),2-hour postprandial blood glucose(2h-BG),total cholesterol(TC),triglyceride(TG),and homeostatic model assessment for insulin resistance(HOMA-IR)index but significantly lower homeostasis model assessment ofβ-cell function(HOMA-β)index(P<0.05).The relative expression of miR-372-3p in serum was independently and positively correlated with HOMA-IR,while the level of GLUT4 was independently and negatively correlated with HOMA-IR(P<0.05).Conclusion:Glycosylated hemoglobin test in the early stages of pregnancy(12–13 weeks of gestation)is important to ensure the health of pregnant women and fetuses.The screening and intervention for elevated glucose in pregnant women act as a guideline for the treatment of GDM.Patients with insulin resistance and related complications such as hyperinsulinemia and hypoglycemia should be given priority.展开更多
Background: Infections in ICU’s patients are known to often originate from the colonization of wounds by the patient’s endogenous microbiota, and to eventually lead to secondary sepsis. Aim: to compare in vitro the ...Background: Infections in ICU’s patients are known to often originate from the colonization of wounds by the patient’s endogenous microbiota, and to eventually lead to secondary sepsis. Aim: to compare in vitro the direct and residual effects after different exposure times of 4% chlorhexidine, and of 0.1% and 0.04% polyhexanide (in gel and solution forms), on ATCC-microorganisms, and too, on bacterial strains obtained from ICU patients. Methods: We used wild multi-drug resistant strains recently obtained from the wounds of patients hospitalized at ICU and reference strains from the American Type Culture Collection (ATCC). Chlorhexidine 4% was studied as a reference solution. The direct and residual effects of the 0.1% and 0.04% polyhexanide, in gel and solution forms, were analyzed using cotton germ carriers. To evaluate the direct effect, we exposed the strains to the antiseptic. To assess the residual effect, the germ-carriers were impregnated with antiseptic and were allowed to dry before we contaminated them. We inoculated the germ carriers in a culture medium with an inhibitor of antiseptic effect to count the number of surviving microorganisms. Findings: 0.1% Polyhexanide solution proved a direct and residual efficacy after 24 hours equivalent to 4% chlorhexidine. Is very important to highlight that this great efficacy did not change according to whether they were ATCC or multidrug-resistant strains. Conclusions: 0.1% polyhexanide demonstrated a great direct and residual efficacy (like 4% chlorhexidine), against multi-drug resistant strains isolated from ICU’s patients. Moreover, due to its few cytotoxicity against keratinocytes and fibroblasts can be an optimal antiseptic for burns, wounds or ulcers.展开更多
Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell...Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47III. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer.展开更多
The roles of multi-drug resistance protein 1 (MDR1), multi-drug resistance related protein 1 (MRP1), lung resistance protein (LRP) and breast cancer resistance protein (BCRP) in the multi-drug resistance (MDR...The roles of multi-drug resistance protein 1 (MDR1), multi-drug resistance related protein 1 (MRP1), lung resistance protein (LRP) and breast cancer resistance protein (BCRP) in the multi-drug resistance (MDR) of hepatocellular carcinoma (HCC) were studied. By exposing HepG2 cell line to progressively increased concentrations of adriamycin (ADM), HepG2 multi-drug resistant subline (HepG2/ADM) was induced. The MDR index of HepG2/ADM was detected by using MTT. The expressions of the four MDR proteins in the three cell lines (L02, HepG2, HepG2/ADM) were investigated at mRNA and protein levels by real-time RT-PCR and Western blot respectively. Our results showed that when the ADM concentration was under 100 pg/L, HepG2 could easily be induced to be drug-resistant. The IC50 of the HepG2/ADM to ADM was 282 times that of HepG2. The expression of MDR1 and BCRP mRNA in HepG2/ADM cells were 400 and 9 times that of HepG2 cells respectively while there was no difference in the mRNA expressions of MRPl and LRE There was no difference between HepG2 and L02 cells in the mRNA expressions of the four genes. At the protein level, the expressions of MDRI, BCRP and LRP but MRPl in HepG2/ADM were significantly higher than those of HepG2 and L02. Between HepG2 and L02, there was no difference in the expressions of four genes at the protein level. HepG2/ADM is a good model for the study of MDR. The four genes are probably the normally expressed gene in liver. The expressions of MDRl and BCRP could be up-regulated by anti-cancer agents in vitro. The MDR of HCC was mainly due to the up-regulation of MDR1 and BCRP but MRP1 and LRE These findings suggest they may serve as targets for the reversal of MDR of HCC.展开更多
AIM: To develop a safe and effective agent for cholangiocarcinoma(CCA) chemotherapy. METHODS: A drug combination experiment was conducted to determine the effects of β-escin in c o m b i n a t i o n w i t h c h e m o...AIM: To develop a safe and effective agent for cholangiocarcinoma(CCA) chemotherapy. METHODS: A drug combination experiment was conducted to determine the effects of β-escin in c o m b i n a t i o n w i t h c h e m o t h e ra p y o n C C A c e l l s. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was performed to determine the effects of β-escin and common chemotherapeutics on the proliferation of human CCA cells(QBC939, Sk-Ch A-1, and MZ-Ch A-1). Immunocytochemistry was used to detect the expression of P-glycoprotein(P-gp) protein. Luciferase reporter assay was used to detect the activation of the Wnt/β-catenin pathway. The protein levels of P-gp, p S9-GSK3β, p T216-GSK3β, GSK3β, β-catenin, and p-β-catenin were further confirmed by western blotting.RESULTS: The drug sensitivity of QBC939 and QBC939/5-fluorouracil(5-FU) cells to 5-FU, vincristine sulfate(VCR), or mitomycin C was significantly enhanced by β-escin compared with either agent alone(P < 0.05). In addition, the combination of β-escin(20 μmol/L) with 5-FU and VCR was synergic with a combination index < 1. Further investigation found that the m RNA and protein expression of P-gp was downregulated by β-escin. Moreover, β-escin induced GSK3β phosphorylation at Tyr-216 and dephosphorylation at Ser-9, resulting in phosphorylation and degradation of β-catenin. Interestingly, activation of the GSK3β/β-catenin pathway induced by Wnt3 a resulted in upregulation of P-gp, which was effectively abolished by β-escin, indicating that β-escin down-regulated P-gp expression in a GSK3β-dependent manner.CONCLUSION: β-escin was a potent reverser of P-gpdependent multidrug resistance, with said effect likely being achieved via inhibition of the GSK3β/β-catenin pathway and thus suggesting a promising strategy of developing combination drugs for CCA.展开更多
Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor rese...Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor resection were examined for expression of MRP gene mRNA by in situ hybridization using labelled digoxigenin probes combined with immunohistochemistry. All the patients were retrospectively followed-up. Results: All of the 47 lung cancer specimens were found to have overexpression of MRP gene mRNA. It was significantly correlated with patients' survival time, response to chemotherapy, recurrence or metastases after surgery, but was not correlated with histology, tumor size, node status, TNM stage, degree of differentiation, age and sex. Conclusion: Overexpression of MRP gene is a marker of prognostic significance in patients with NSCLC.展开更多
Salmonella enterica has been documented as one of the leading causes of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated food products. Thus, this research was ai...Salmonella enterica has been documented as one of the leading causes of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated food products. Thus, this research was aimed at studying the antimicrobial susceptibility pattern and detection of quinolone resistance in Salmonella spp isolated from food of animal origin. Thirty-six Salmonella isolates comprising 8 from poultry and 28 from seafood(clams) were identified, serotyped and characterized for their antimicrobial susceptibility against 10 different antibiotics. Plasmid DNA was isolated from all the isolates by alkaline lysis, quinolone resistant non-typhoidal S. Weltevreden were examined for mutation in the DNA gyrase coding gene. Among the 36 Salmonella isolates, 20 were S. weltevreden(8 from poultry and 12 from seafood) and 16 were S. Typhimurium(from seafood). All the isolates showed multiple resistance to nalidixic acid, tetracycline, co-trimoxazole and nitrofurantoin, but, interestingly, the isolates were 100% susceptible to ampicillin, chloramphenicol and gentamicin. Resistant isolates from the study carried the genes responsible for resistance to respective antibiotics. The strain S130 isolated in the study showed single point mutation,Asp87Gly, at position 87 in quinolone resistance determining region. It revealed mutation in quinolone resistance determining region as a cause for quinolone resistance in non-typhoidal Salmonellae. The occurrence of genes accountable for plasmid mediated resistance to quinolones(viz., qnrA, qnrB and qnrS) in plasmid of non-typhoidal Salmonellae isolates provides evidence for plasmid mediated quinolone resistance.展开更多
Objective The clinical signilicance of exPression of multidrug resistance- associated protein (MRP) in gastric and renal carcinoma was investigated. Methods LSAB immunohistochemistry was performed to detect eopression...Objective The clinical signilicance of exPression of multidrug resistance- associated protein (MRP) in gastric and renal carcinoma was investigated. Methods LSAB immunohistochemistry was performed to detect eopression of MRP in the carcinoma tissues of 52 patients with gastric carcinoma and 20 cases with renal cell carcinoma. Results The positive expression rate of MRP was 38.5% (20/52) in gastric carcinoma tissues, and 60% (12/20) in renal carcinoma tissues. The expression of MRP both on cellular membrane and in cytoplasm was observed, but the expression in cytoplasm (thick granule) was more obvious. The positive expression rates of MRP in advanced gastric and renal carcinoma (Ⅲ orⅣ stage) were 60% (15/25) and 88.90% (8/9) reSPectively, which were higher than those in early lesion (Ⅰ or Ⅱ stage, 18.5% and 36.4% respectively). Furthermore, the patients with positive expression of MRP in gastric carcinoma tissues had shorter mean survival time and lower 5-year survival rate than that with negative eopression of MRP. Conclusion MRP plays an important role in the infiltration and metastasis of gastric and renal carcinoma and might contribute to the intrinsic drug - resistance in both carcinomas.展开更多
This prospective study was carried out to assess the sensitivity and resistance pattern of lactose non-fermenting Escherichia coli from July 2018 to December 2018 in the Laboratory of Microbiology at Luanda Medical Ce...This prospective study was carried out to assess the sensitivity and resistance pattern of lactose non-fermenting Escherichia coli from July 2018 to December 2018 in the Laboratory of Microbiology at Luanda Medical Center, Angola. Out of 1170 patient, a total of 120 urine specimens infected with Escherichia coli (>105 CFU/ml) were collected according to the routine protocol of urinalysis. Among these 120 isolates, 25 (21%) isolates were determined as “atypical”, lactose non-fermenting E. colis trains. The twenty-five lactose non-fermenting Escherichia coli strains isolated from urine samples in Luanda Medical Center were declared as Multiple Drugs-Resistant strains with high resistance to Cefalexine (100%), Cefuroxime (100%), Ceftriaxone (92%), Gentamycin (92%), Ciprofloxacin (72%) and Amoxiciclin/Clavulanic (80%). The alarming resistance level to the first-choice drugs for the treatment of urinary tract infections caused by non-fermentative lactose E. coli was observed.展开更多
Using the Landauer formula and the quantum S-matrix scattering theory, we derive a resistance formula for multi-barrier structure under phase coherent transmission condition. This formula shows that when the transport...Using the Landauer formula and the quantum S-matrix scattering theory, we derive a resistance formula for multi-barrier structure under phase coherent transmission condition. This formula shows that when the transport is coherent, the potential wells of the structure are just like conductors contributing to the overall resistance. And because the resistance formula is derived based on the scattering theory, the barrier resistance will change with the number of scattering centres (i.e. the number of barriers) in the structure.展开更多
In order to investigate the effects of vector-based hairpin small interference RNA (shRNA) on the reversal of multi-drug resistance (mdr) of A2780/Taxol cells, a novel vector pEGFP-HI/mdrl containing mdrl-shRNA ta...In order to investigate the effects of vector-based hairpin small interference RNA (shRNA) on the reversal of multi-drug resistance (mdr) of A2780/Taxol cells, a novel vector pEGFP-HI/mdrl containing mdrl-shRNA targeting at position 2943-2963 of mdrl was designed and synthesized. Subsequently, A2780/Taxol cells were transfected with pEGFP-H1/rndrl, and the expression ofmdrl mRNA and P-gp was detected by using RT-PCR and Western blot respectively. MTT was used to measure the 50% inhibition concentration (IC50) of Taxol to A2780/Taxol cells. The results showed that at the 24th and 48th h after transfection, the expression of mdrl mRNA was decreased to (52.1±1.0)% and (0.01±1.7)%, and that of P-gp decreased to (88.3±2.1)% and 0%, respectively. At the 48th h after transfection, the relative reversal rate of A2780/Taxol cells to Taxol was 69.54%. In vivo, the nude mice xenografts were injected with pEGFP-H1/mdrl, and then administrated Taxol. The tumor volume in pEGFP-H1/mdrl-transfected group was significantly reduced as compared with that in blank control group or pEGFP-Hl-transfected group (807.20±103.16 vs 1563.78±210.54 or 1480.78±241.24 mm^3, both P〈0.01). These results suggested that transfection of pEGFP-HI/mdrl could efficiently down-regulate the expression of mdrl mRNA and P-gp in A2780/Taxol cells, and effectively restore the sensitivity of A2780/Taxol ceils to Taxol both in vitro and in vivo.展开更多
Twenty-two nitrate nonutilizing (nit) mutants were recovered from five wild-type isolates of Fusarium graminearum and fifty nit mutants were recovered from three JS399-19-resistant mutants of F. graminearum cultured...Twenty-two nitrate nonutilizing (nit) mutants were recovered from five wild-type isolates of Fusarium graminearum and fifty nit mutants were recovered from three JS399-19-resistant mutants of F. graminearum cultured on MMC medium. Some biological properties were compared between nit mutants and their parental isolates. The results showed that there were no significant differences in growth rate, cultural characters or pathogenicity between JS399-19-resistant nit mutants and their parental isolates. But the conidial production and the sexual reproduction ability changed to some extent. There was no cross resistance toward chlorate and JS399-19 in F. graminearum and the resistance could be stable through 20-time subcultures. Therefore, the nit could be used as a genetic marker for studying the genetics of JS399-19 resistance in E graminearum, which was used to study JS399-19 resistance transferability in hyphal fusion. Resistance in JS399-19 could not be transferred by hyphal fusion or could be transferred with low chance between two compatible isolates, which would delay the development of JS399-19 resistance in the field.展开更多
Objectives: Multi-drug resistance (MDR) to chemotherapy remains a major obstacle to overcome in the successful treatment of patients with cancers. It was recently discovered that Leptomycin B (LMB) reduces the paclita...Objectives: Multi-drug resistance (MDR) to chemotherapy remains a major obstacle to overcome in the successful treatment of patients with cancers. It was recently discovered that Leptomycin B (LMB) reduces the paclitaxel-induced MDR in CCRF-CEM/Taxol cells. However, the mechanism remains unclear. Here we sought to explore the mechanism of LMB to reduce the MDR induced by paclitaxel. Results: LMB has remarkable cytotoxic effects in both sensitive CCRF-CEM and resistant CCRF-CEM/Taxol cell lines. The paclitaxel-induced MDR was reduced by 0.013 μm of LMB. Lower concentration of LMB regulated cell cycle progress, in situ expressions of P-gp, MRP1, and LRP, expression of CRM1, and localization of P-gp and CRM1 in CCRF-CEM/taxol cells. Study Design: Cytotoxicity of LMB on cancerous cell lines was determined by MTT assay. Cell cycle progress and in situ expressions of P-gp, MRP1, and LRP were analyzed by flow cytometry. Expression of CRM1 in the cells was examined by Western blot. And co-localization between P-gp and CRM1 was determined by laser confocal microscopy. Conclusion: The paclitaxel-induced MDR of CCRFCEM/Taxol cells was reduced by lower concentration of LMB. The mechanisms might be related to decreasing in situ expression of drug transporter proteins, promoting cell cycle progress, and altering co-localization between P-gp and CRM1 in the resistant cells.展开更多
Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was ...Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was used to determine the drug resistance of K562/DNR cells and the cellular toxicity of bortezomib.K562/DNR cells were cultured for 12 hours,24 hours and 36 hours with 100 μg/ml DNR only or plus 4 μg/L bortezomib.The expressions of NF-κB,IκB and P-gp of K562/DNR were detected with Western blot method,the activity of NF-κB was tested by ELISA method and the apoptosis rate was observed in each group respectively.Results:The IC50 of DNR on cells of K562/S and K562/DNR groups were 1.16 μg/ml and 50.43 μg/mL,respectively.The drug-resistant fold was 43.47.The IC10 of PS-341 on Cell strain K562/DNR was 4 μg/L.Therefore,4 μg/L was selected as the concentration for PS-341 to reverse drug-resistance in this study.DNR induced down-regulation of IκB expression,up-regulation of NF-κB and P-gp expression.After treatment with PS-341,a proteasome inhibitor,the IκB degradation was inhibited,IκB expression increased,NF-κB and P-gp expression decreased in a time dependent manner.Compared to DNR group,the NF-κB p65 activity of DNR+PS-341 group was decreased.Compared to corresponding DNR group,DNR induced apoptosis rate increases after addition of PS-341 in a time dependent manner.Conclusion:Proteasome inhibitor bortezomib can convert the leukemia cell drug resistance.The mechanism may be that bortezomib decreases the degradation of IκB and the expression of NF-κB and P-gp,therefore induces the apoptosis of multi-drug resistant cells.展开更多
文摘In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected by biotic and abiotic constraints. Among those constraints, striga has a high impact on yield. In fact, to survive, farmers are growing their local preferred sorghum varieties wish is highly sensible to the weed. Striga management is a challenge that requires a permanent solution. In addition, the development of high-yielding Striga resistant genotypes will be appreciated by farmers. The development of striga resistance will be based on the breeding population performances under farmer’s diverse environmental conditions adaptation. The main objective of this study is to evaluate two breeding populations for striga resistance in two different environments at Boulke and Dibissou in Tahoua region, to identify the early and high-yielding striga tolerant genotypes under natural infestation.
文摘BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate the impact of patient demographic and clinical characteristics on MDRO acquisition,as well as the impact of MDRO acquisition on intensive care unit(ICU)and hospital length of stay,and on ICU mortality and 1-year mortality post heart transplantation.METHODS This retrospective cohort study analyzed 98 consecutive heart transplant patients over a ten-year period(2013-2022)in a single transplantation center.Data was collected regarding MDROs commonly encountered in critical care.RESULTS Among the 98 transplanted patients(70%male),about a third(32%)acquired or already harbored MDROs upon transplantation(MDRO group),while two thirds did not(MDRO-free group).The prevalent MDROs were Acinetobacter baumannii(14%),Pseudomonas aeruginosa(12%)and Klebsiella pneumoniae(11%).Compared to MDRO-free patients,the MDRO group was characterized by higher body mass index(P=0.002),higher rates of renal failure(P=0.017),primary graft dysfunction(10%vs 4.5%,P=0.001),surgical re-exploration(34%vs 14%,P=0.017),mechanical circulatory support(47%vs 26%P=0.037)and renal replacement therapy(28%vs 9%,P=0.014),as well as longer extracorporeal circulation time(median 210 vs 161 min,P=0.003).The median length of stay was longer in the MDRO group,namely ICU stay was 16 vs 9 d in the MDRO-free group(P=0.001),and hospital stay was 38 vs 28 d(P=0.006),while 1-year mortality was higher(28%vs 7.6%,log-rank-χ2:7.34).CONCLUSION Following heart transplantation,a predominance of Gram-negative MDROs was noted.MDRO acquisition was associated with higher complication rates,prolonged ICU and total hospital stay,and higher post-transplantation mortality.
基金Changshu Science and Technology Plan(Social Development)Project(No.CS202130)Key Project of Changshu No.2 People’s Hospital(No.CSEY2021007)。
文摘Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.
文摘Objective: To evaluate the spread of Multidrug-Resistant (MDR) bacterial infections in Bukavu hospitals and test antimicrobial susceptibility patterns of some isolates to usual marketed antibiotics. Methods: The prevalence of MDR strains was determined by using general antimicrobial susceptibility data collected from 3 hospital laboratories. The susceptibility of some isolates to usual antibiotics was processed by agar diffusion method with standard E. coli ATCC8739 and standard antibiotics discs as controls. The tested antibiotics were ampicillin, ceftriaxone, gentamicin, chloramphenicol and ciprofloxacin. Results: At the 3 hospitals, 758 tests were realized in urine, pus, stool, FCV, blood, LCR, split and FU specimens;46 strains were unidentified and 712 strains were identified. Of 712 identified strains, 223 (31.4%) were MDR or XDR strains including Escherichia coli, Klebsiella pneumoniae, Enterobacter, Proteus mirabilis, Salmonella enterica, Pseudomonas aeruginosa, Citrobacter freundii, Morganella morganii, Enterococcus faecalis and E. faecium, Neisseria gonorrohoae, Staphylococcus aureus, coagulase-negative, staphylococci, Streptococcus pneumoniae and Streptococcus pyogenes. Of the infected patients, 36 (21.5%) children were under 16 years and 188 (78.5%) adults were predominately women (58.5%). The susceptibility test showed that all strains but S. aureus were resistant to ampicillin and amoxicillin and ciprofloxacin. Gentamicin, ceftriaxone, and chloramphenicol remain partially active (27% - 80%) against P. mirabilis, E. coli and P. aeruginosa. The resistance is more likely related to strain mutation than to pharmaceutical quality of the antibiotics prescribed. Conclusion: Both data from hospital laboratories and in vitro post-testing findings confirmed the ongoing elevated prevalence of MDR strains in Bukavu. The causes of antibiotic misuse and socio-economic determinants of the phenomenon of resistance should be scrutinized in order to take adequate strategies in the prospective of establishing an effective control system against this threat to overall health. The results of this work on MDR profiles have various implications for the management of infectious diseases. It provides indicators for the surveillance of antimicrobial resistance, practical guidelines for antibiotic susceptibility testing in biomedical laboratories, and guidance for antibiotic therapy.
基金supported by the National Key Research and Development Program of China(2019YFD1002603-1)。
文摘PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T3,and T4)in transgenic maize germplasms(S3002 and 349)containing the bivalent genes(insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1)and their corresponding wild type.Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations;q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots,stems,and leaves of tested maize plants.In addition,S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type.Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit.These findings could be exploited for improving other cultivated maize varieties.
基金financial support for the completion of this work
文摘Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.
基金supported by the following projects:Youth Science and Technology Fund of Affiliated Hospital of Hebei University(2017Q024)Baoding City Science and Technology Plan Project(2041zf295),and Hebei University Medical Subject Cultivation Project(2022b03).
文摘Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We conducted a retrospective cohort study of 42 patients who were diagnosed with GDM and hospitalized in our hospital during the period from January 2017 to December 2021 and another 42 patients who had normal pregnancy during the same period by collecting their clinical data.We analyzed their serum microRNA expression profiles and miR-372-3p levels to study the relationship between GDM and insulin resistance.Results:The relative expression of miR-372-3p in the serum of patients in the GDM group was significantly higher than that of patients in the control group,but the GLUT 4 level of the GDM group was significantly lower than that of the control group(P<0.05).Compared with the control group,the GDM group had significantly higher levels of fasting blood glucose(FBG),fasting insulin(FINS),2-hour postprandial blood glucose(2h-BG),total cholesterol(TC),triglyceride(TG),and homeostatic model assessment for insulin resistance(HOMA-IR)index but significantly lower homeostasis model assessment ofβ-cell function(HOMA-β)index(P<0.05).The relative expression of miR-372-3p in serum was independently and positively correlated with HOMA-IR,while the level of GLUT4 was independently and negatively correlated with HOMA-IR(P<0.05).Conclusion:Glycosylated hemoglobin test in the early stages of pregnancy(12–13 weeks of gestation)is important to ensure the health of pregnant women and fetuses.The screening and intervention for elevated glucose in pregnant women act as a guideline for the treatment of GDM.Patients with insulin resistance and related complications such as hyperinsulinemia and hypoglycemia should be given priority.
文摘Background: Infections in ICU’s patients are known to often originate from the colonization of wounds by the patient’s endogenous microbiota, and to eventually lead to secondary sepsis. Aim: to compare in vitro the direct and residual effects after different exposure times of 4% chlorhexidine, and of 0.1% and 0.04% polyhexanide (in gel and solution forms), on ATCC-microorganisms, and too, on bacterial strains obtained from ICU patients. Methods: We used wild multi-drug resistant strains recently obtained from the wounds of patients hospitalized at ICU and reference strains from the American Type Culture Collection (ATCC). Chlorhexidine 4% was studied as a reference solution. The direct and residual effects of the 0.1% and 0.04% polyhexanide, in gel and solution forms, were analyzed using cotton germ carriers. To evaluate the direct effect, we exposed the strains to the antiseptic. To assess the residual effect, the germ-carriers were impregnated with antiseptic and were allowed to dry before we contaminated them. We inoculated the germ carriers in a culture medium with an inhibitor of antiseptic effect to count the number of surviving microorganisms. Findings: 0.1% Polyhexanide solution proved a direct and residual efficacy after 24 hours equivalent to 4% chlorhexidine. Is very important to highlight that this great efficacy did not change according to whether they were ATCC or multidrug-resistant strains. Conclusions: 0.1% polyhexanide demonstrated a great direct and residual efficacy (like 4% chlorhexidine), against multi-drug resistant strains isolated from ICU’s patients. Moreover, due to its few cytotoxicity against keratinocytes and fibroblasts can be an optimal antiseptic for burns, wounds or ulcers.
基金This work was supported by grants from Shanghai Educational Committee Funds(No.99B18).
文摘Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47III. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer.
基金This project was supported by a grant from the Foundation for Key Scientific Research Programs of Ministry of Health of China (No. 20012003)
文摘The roles of multi-drug resistance protein 1 (MDR1), multi-drug resistance related protein 1 (MRP1), lung resistance protein (LRP) and breast cancer resistance protein (BCRP) in the multi-drug resistance (MDR) of hepatocellular carcinoma (HCC) were studied. By exposing HepG2 cell line to progressively increased concentrations of adriamycin (ADM), HepG2 multi-drug resistant subline (HepG2/ADM) was induced. The MDR index of HepG2/ADM was detected by using MTT. The expressions of the four MDR proteins in the three cell lines (L02, HepG2, HepG2/ADM) were investigated at mRNA and protein levels by real-time RT-PCR and Western blot respectively. Our results showed that when the ADM concentration was under 100 pg/L, HepG2 could easily be induced to be drug-resistant. The IC50 of the HepG2/ADM to ADM was 282 times that of HepG2. The expression of MDR1 and BCRP mRNA in HepG2/ADM cells were 400 and 9 times that of HepG2 cells respectively while there was no difference in the mRNA expressions of MRPl and LRE There was no difference between HepG2 and L02 cells in the mRNA expressions of the four genes. At the protein level, the expressions of MDRI, BCRP and LRP but MRPl in HepG2/ADM were significantly higher than those of HepG2 and L02. Between HepG2 and L02, there was no difference in the expressions of four genes at the protein level. HepG2/ADM is a good model for the study of MDR. The four genes are probably the normally expressed gene in liver. The expressions of MDRl and BCRP could be up-regulated by anti-cancer agents in vitro. The MDR of HCC was mainly due to the up-regulation of MDR1 and BCRP but MRP1 and LRE These findings suggest they may serve as targets for the reversal of MDR of HCC.
基金Supported by National Nature Science Foundation of China,No.81101502the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China,No.J1310027
文摘AIM: To develop a safe and effective agent for cholangiocarcinoma(CCA) chemotherapy. METHODS: A drug combination experiment was conducted to determine the effects of β-escin in c o m b i n a t i o n w i t h c h e m o t h e ra p y o n C C A c e l l s. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was performed to determine the effects of β-escin and common chemotherapeutics on the proliferation of human CCA cells(QBC939, Sk-Ch A-1, and MZ-Ch A-1). Immunocytochemistry was used to detect the expression of P-glycoprotein(P-gp) protein. Luciferase reporter assay was used to detect the activation of the Wnt/β-catenin pathway. The protein levels of P-gp, p S9-GSK3β, p T216-GSK3β, GSK3β, β-catenin, and p-β-catenin were further confirmed by western blotting.RESULTS: The drug sensitivity of QBC939 and QBC939/5-fluorouracil(5-FU) cells to 5-FU, vincristine sulfate(VCR), or mitomycin C was significantly enhanced by β-escin compared with either agent alone(P < 0.05). In addition, the combination of β-escin(20 μmol/L) with 5-FU and VCR was synergic with a combination index < 1. Further investigation found that the m RNA and protein expression of P-gp was downregulated by β-escin. Moreover, β-escin induced GSK3β phosphorylation at Tyr-216 and dephosphorylation at Ser-9, resulting in phosphorylation and degradation of β-catenin. Interestingly, activation of the GSK3β/β-catenin pathway induced by Wnt3 a resulted in upregulation of P-gp, which was effectively abolished by β-escin, indicating that β-escin down-regulated P-gp expression in a GSK3β-dependent manner.CONCLUSION: β-escin was a potent reverser of P-gpdependent multidrug resistance, with said effect likely being achieved via inhibition of the GSK3β/β-catenin pathway and thus suggesting a promising strategy of developing combination drugs for CCA.
基金the Natural Science Foundation of Shanghai, China! (96ZB14043).
文摘Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor resection were examined for expression of MRP gene mRNA by in situ hybridization using labelled digoxigenin probes combined with immunohistochemistry. All the patients were retrospectively followed-up. Results: All of the 47 lung cancer specimens were found to have overexpression of MRP gene mRNA. It was significantly correlated with patients' survival time, response to chemotherapy, recurrence or metastases after surgery, but was not correlated with histology, tumor size, node status, TNM stage, degree of differentiation, age and sex. Conclusion: Overexpression of MRP gene is a marker of prognostic significance in patients with NSCLC.
文摘Salmonella enterica has been documented as one of the leading causes of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated food products. Thus, this research was aimed at studying the antimicrobial susceptibility pattern and detection of quinolone resistance in Salmonella spp isolated from food of animal origin. Thirty-six Salmonella isolates comprising 8 from poultry and 28 from seafood(clams) were identified, serotyped and characterized for their antimicrobial susceptibility against 10 different antibiotics. Plasmid DNA was isolated from all the isolates by alkaline lysis, quinolone resistant non-typhoidal S. Weltevreden were examined for mutation in the DNA gyrase coding gene. Among the 36 Salmonella isolates, 20 were S. weltevreden(8 from poultry and 12 from seafood) and 16 were S. Typhimurium(from seafood). All the isolates showed multiple resistance to nalidixic acid, tetracycline, co-trimoxazole and nitrofurantoin, but, interestingly, the isolates were 100% susceptible to ampicillin, chloramphenicol and gentamicin. Resistant isolates from the study carried the genes responsible for resistance to respective antibiotics. The strain S130 isolated in the study showed single point mutation,Asp87Gly, at position 87 in quinolone resistance determining region. It revealed mutation in quinolone resistance determining region as a cause for quinolone resistance in non-typhoidal Salmonellae. The occurrence of genes accountable for plasmid mediated resistance to quinolones(viz., qnrA, qnrB and qnrS) in plasmid of non-typhoidal Salmonellae isolates provides evidence for plasmid mediated quinolone resistance.
文摘Objective The clinical signilicance of exPression of multidrug resistance- associated protein (MRP) in gastric and renal carcinoma was investigated. Methods LSAB immunohistochemistry was performed to detect eopression of MRP in the carcinoma tissues of 52 patients with gastric carcinoma and 20 cases with renal cell carcinoma. Results The positive expression rate of MRP was 38.5% (20/52) in gastric carcinoma tissues, and 60% (12/20) in renal carcinoma tissues. The expression of MRP both on cellular membrane and in cytoplasm was observed, but the expression in cytoplasm (thick granule) was more obvious. The positive expression rates of MRP in advanced gastric and renal carcinoma (Ⅲ orⅣ stage) were 60% (15/25) and 88.90% (8/9) reSPectively, which were higher than those in early lesion (Ⅰ or Ⅱ stage, 18.5% and 36.4% respectively). Furthermore, the patients with positive expression of MRP in gastric carcinoma tissues had shorter mean survival time and lower 5-year survival rate than that with negative eopression of MRP. Conclusion MRP plays an important role in the infiltration and metastasis of gastric and renal carcinoma and might contribute to the intrinsic drug - resistance in both carcinomas.
文摘This prospective study was carried out to assess the sensitivity and resistance pattern of lactose non-fermenting Escherichia coli from July 2018 to December 2018 in the Laboratory of Microbiology at Luanda Medical Center, Angola. Out of 1170 patient, a total of 120 urine specimens infected with Escherichia coli (>105 CFU/ml) were collected according to the routine protocol of urinalysis. Among these 120 isolates, 25 (21%) isolates were determined as “atypical”, lactose non-fermenting E. colis trains. The twenty-five lactose non-fermenting Escherichia coli strains isolated from urine samples in Luanda Medical Center were declared as Multiple Drugs-Resistant strains with high resistance to Cefalexine (100%), Cefuroxime (100%), Ceftriaxone (92%), Gentamycin (92%), Ciprofloxacin (72%) and Amoxiciclin/Clavulanic (80%). The alarming resistance level to the first-choice drugs for the treatment of urinary tract infections caused by non-fermentative lactose E. coli was observed.
文摘Using the Landauer formula and the quantum S-matrix scattering theory, we derive a resistance formula for multi-barrier structure under phase coherent transmission condition. This formula shows that when the transport is coherent, the potential wells of the structure are just like conductors contributing to the overall resistance. And because the resistance formula is derived based on the scattering theory, the barrier resistance will change with the number of scattering centres (i.e. the number of barriers) in the structure.
基金supported by grants from National Natural Sciences Foundation of China (No.30070786)Scientific Research Foundation of Hubei Health Department (No.JX2B17)Key Technologies R&D Programme of Hubei Province,China (No.2007AA301C20)
文摘In order to investigate the effects of vector-based hairpin small interference RNA (shRNA) on the reversal of multi-drug resistance (mdr) of A2780/Taxol cells, a novel vector pEGFP-HI/mdrl containing mdrl-shRNA targeting at position 2943-2963 of mdrl was designed and synthesized. Subsequently, A2780/Taxol cells were transfected with pEGFP-H1/rndrl, and the expression ofmdrl mRNA and P-gp was detected by using RT-PCR and Western blot respectively. MTT was used to measure the 50% inhibition concentration (IC50) of Taxol to A2780/Taxol cells. The results showed that at the 24th and 48th h after transfection, the expression of mdrl mRNA was decreased to (52.1±1.0)% and (0.01±1.7)%, and that of P-gp decreased to (88.3±2.1)% and 0%, respectively. At the 48th h after transfection, the relative reversal rate of A2780/Taxol cells to Taxol was 69.54%. In vivo, the nude mice xenografts were injected with pEGFP-H1/mdrl, and then administrated Taxol. The tumor volume in pEGFP-H1/mdrl-transfected group was significantly reduced as compared with that in blank control group or pEGFP-Hl-transfected group (807.20±103.16 vs 1563.78±210.54 or 1480.78±241.24 mm^3, both P〈0.01). These results suggested that transfection of pEGFP-HI/mdrl could efficiently down-regulate the expression of mdrl mRNA and P-gp in A2780/Taxol cells, and effectively restore the sensitivity of A2780/Taxol ceils to Taxol both in vitro and in vivo.
基金This work was supported by the State "973" Programs from the Ministry of Science and Technology of China (No. 2006CB101900)Technology and the Project (No. 20050307028)+3 种基金from the Ministry of Education of China, the National Natural Science Foundation of China (No. 30671048 & No. 30671384)Jiangsu Provincial Program for Tackling Key Problems of Science and Technology (No. BG2006328)the Key Technology R & D program from the Ministry of Science and Technology of China (No. 2006BAE01A04-08)the state "863" programs from the Ministry of Science and Technology of China (No. 2006AA10A211).
文摘Twenty-two nitrate nonutilizing (nit) mutants were recovered from five wild-type isolates of Fusarium graminearum and fifty nit mutants were recovered from three JS399-19-resistant mutants of F. graminearum cultured on MMC medium. Some biological properties were compared between nit mutants and their parental isolates. The results showed that there were no significant differences in growth rate, cultural characters or pathogenicity between JS399-19-resistant nit mutants and their parental isolates. But the conidial production and the sexual reproduction ability changed to some extent. There was no cross resistance toward chlorate and JS399-19 in F. graminearum and the resistance could be stable through 20-time subcultures. Therefore, the nit could be used as a genetic marker for studying the genetics of JS399-19 resistance in E graminearum, which was used to study JS399-19 resistance transferability in hyphal fusion. Resistance in JS399-19 could not be transferred by hyphal fusion or could be transferred with low chance between two compatible isolates, which would delay the development of JS399-19 resistance in the field.
文摘Objectives: Multi-drug resistance (MDR) to chemotherapy remains a major obstacle to overcome in the successful treatment of patients with cancers. It was recently discovered that Leptomycin B (LMB) reduces the paclitaxel-induced MDR in CCRF-CEM/Taxol cells. However, the mechanism remains unclear. Here we sought to explore the mechanism of LMB to reduce the MDR induced by paclitaxel. Results: LMB has remarkable cytotoxic effects in both sensitive CCRF-CEM and resistant CCRF-CEM/Taxol cell lines. The paclitaxel-induced MDR was reduced by 0.013 μm of LMB. Lower concentration of LMB regulated cell cycle progress, in situ expressions of P-gp, MRP1, and LRP, expression of CRM1, and localization of P-gp and CRM1 in CCRF-CEM/taxol cells. Study Design: Cytotoxicity of LMB on cancerous cell lines was determined by MTT assay. Cell cycle progress and in situ expressions of P-gp, MRP1, and LRP were analyzed by flow cytometry. Expression of CRM1 in the cells was examined by Western blot. And co-localization between P-gp and CRM1 was determined by laser confocal microscopy. Conclusion: The paclitaxel-induced MDR of CCRFCEM/Taxol cells was reduced by lower concentration of LMB. The mechanisms might be related to decreasing in situ expression of drug transporter proteins, promoting cell cycle progress, and altering co-localization between P-gp and CRM1 in the resistant cells.
基金supported by Educational Commission of Liaoning Province, China (No. 20060985)
文摘Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was used to determine the drug resistance of K562/DNR cells and the cellular toxicity of bortezomib.K562/DNR cells were cultured for 12 hours,24 hours and 36 hours with 100 μg/ml DNR only or plus 4 μg/L bortezomib.The expressions of NF-κB,IκB and P-gp of K562/DNR were detected with Western blot method,the activity of NF-κB was tested by ELISA method and the apoptosis rate was observed in each group respectively.Results:The IC50 of DNR on cells of K562/S and K562/DNR groups were 1.16 μg/ml and 50.43 μg/mL,respectively.The drug-resistant fold was 43.47.The IC10 of PS-341 on Cell strain K562/DNR was 4 μg/L.Therefore,4 μg/L was selected as the concentration for PS-341 to reverse drug-resistance in this study.DNR induced down-regulation of IκB expression,up-regulation of NF-κB and P-gp expression.After treatment with PS-341,a proteasome inhibitor,the IκB degradation was inhibited,IκB expression increased,NF-κB and P-gp expression decreased in a time dependent manner.Compared to DNR group,the NF-κB p65 activity of DNR+PS-341 group was decreased.Compared to corresponding DNR group,DNR induced apoptosis rate increases after addition of PS-341 in a time dependent manner.Conclusion:Proteasome inhibitor bortezomib can convert the leukemia cell drug resistance.The mechanism may be that bortezomib decreases the degradation of IκB and the expression of NF-κB and P-gp,therefore induces the apoptosis of multi-drug resistant cells.