BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves ...BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition ...The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.展开更多
When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully develope...When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.展开更多
Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific c...Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.展开更多
Identifying the active and inactive period of earthquakes in Chinese mainland is of great importance for guiding mid-short term, especially short term, earthquake forecast.……
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
Bouguer gravity anomaly in North China is decomposed with multi scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to...Bouguer gravity anomaly in North China is decomposed with multi scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to Moho. Characteristics of anomalies of different orders and corresponding structural features are discussed. The result shows that details of wavelet transform of different orders reflect the distribution features of rock density at different depths and in various scales. In most cases, the two sides of a fault especially a deep and large fault in North China differ greatly in rock density. This difference records the history of the formation and evolution of the crust. Deep structural setting for the \%M\%s≥7.0 strong earthquakes in this region is also discussed.展开更多
In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these fu...In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.展开更多
基金the National Natural Science Foundation of China,No. 60703045
文摘BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
基金This research is supported by the Key Project of National Natural Science Foundation of China (No.40035010
文摘The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB720101 and 2012CB720103)the National Natural Science Foundation of China(Grant Nos.11272233,11332006,and 11411130150)
文摘When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.
基金supported by China Petrochemical key project during the 11th Five-year Plan as well as the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.
基金Chinese Joint Seismological Science Foundation and the Chinese-Greece Cooperation Project.
文摘Identifying the active and inactive period of earthquakes in Chinese mainland is of great importance for guiding mid-short term, especially short term, earthquake forecast.……
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.
文摘Bouguer gravity anomaly in North China is decomposed with multi scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to Moho. Characteristics of anomalies of different orders and corresponding structural features are discussed. The result shows that details of wavelet transform of different orders reflect the distribution features of rock density at different depths and in various scales. In most cases, the two sides of a fault especially a deep and large fault in North China differ greatly in rock density. This difference records the history of the formation and evolution of the crust. Deep structural setting for the \%M\%s≥7.0 strong earthquakes in this region is also discussed.
文摘In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.