期刊文献+
共找到2,868篇文章
< 1 2 144 >
每页显示 20 50 100
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
1
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep Learning multi-task Learning
下载PDF
Improved Scatter Search Algorithm for Multi-skilled Personnel Scheduling of Ship Block Painting
2
作者 Guanglei Jiao Zuhua Jiang +1 位作者 Jianmin Niu Wenjuan Yu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期1-15,共15页
This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,mul... This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,multi-skilled workers,and worker’s efficiency,then a mathematical model is established to minimize the completion time. The constraints of task priority,paint preparation,pump management,and neighbor avoidance in the ship block painting production are considered. Based on this model,an improved scatter search(ISS)algorithm is designed,and the hybrid approximate dynamic programming(ADP)algorithm is used to improve search efficiency. In addition,the two solution combination methods of path-relinking and task sequence combination are used to enhance the search breadth and depth. The numerical experimental results show that ISS has a significant advantage in solving efficiency compared with the solver in small scale instances;Compared with the scatter search algorithm and genetic algorithm,ISS can stably improve the solution quality. Verified by the production example,ISS effectively shortens the total completion time of the production,which is suitable for scheduling problems in the actual painting production of the shipyard. 展开更多
关键词 ship painting personnel scheduling multi⁃skilled workers scatter search task constraints
下载PDF
Multi-Agent模式下的城市暴雨内涝应急决策方法研究
3
作者 王莉 杨若昕 +2 位作者 曹景稳 景紫嫣 李佳欢 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期199-206,共8页
为厘清应对暴雨内涝灾害动态决策过程中决策主体、决策、决策方案等决策要素间的不确定关系,提出1种多主体(Multi-Agent)和贝叶斯决策网络(BDN)相结合的应急决策方法。首先分阶段构建“主体-任务”可视化网络,分析暴雨内涝灾害各应急阶... 为厘清应对暴雨内涝灾害动态决策过程中决策主体、决策、决策方案等决策要素间的不确定关系,提出1种多主体(Multi-Agent)和贝叶斯决策网络(BDN)相结合的应急决策方法。首先分阶段构建“主体-任务”可视化网络,分析暴雨内涝灾害各应急阶段的主要任务和参与的决策主体;在考虑到决策要素间的动态不确定性可能造成决策风险的前提下,运用Multi-Agent和BDN方法探究各决策要素间的影响关系,以便进行方案集优选。研究结果表明:该方法具有实用性和现实意义,研究结果可为城市暴雨内涝灾害的应急决策提供理论参考。 展开更多
关键词 城市暴雨内涝 贝叶斯决策网络 多主体应急决策 不确定关系 “主体-任务”互动网络
下载PDF
Multi-tasking to Address Diversity in Language Learning
4
作者 雷琨 《海外英语》 2014年第21期98-99,103,共3页
With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately... With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines. 展开更多
关键词 multi-tasking DIVERSITY LEARNING STYLE the fishbow
下载PDF
基于改进NSGA-Ⅲ的D2D协同MEC多目标优化研究 被引量:2
5
作者 王志鸿 王高才 赵启飞 《计算机科学》 CSCD 北大核心 2024年第3期280-288,共9页
在当前的移动边缘计算(Mobile Edge Computing,MEC)模型中,由于任务是直接上传到MEC服务器执行,存在边缘服务器的计算压力大、空闲移动设备上的资源未得到充分利用等问题。使用边缘网络中的空闲设备进行协同计算,能够实现用户闲置资源... 在当前的移动边缘计算(Mobile Edge Computing,MEC)模型中,由于任务是直接上传到MEC服务器执行,存在边缘服务器的计算压力大、空闲移动设备上的资源未得到充分利用等问题。使用边缘网络中的空闲设备进行协同计算,能够实现用户闲置资源的合理利用,增强MEC的计算能力。因此,提出了一种利用终端直通(Device-to-Device,D2D)进行协同计算的部分卸载MEC模型(D2D Collaborative MEC for Partial Offloading,DCM-PO)。在该模型中,除本地计算和MEC服务器计算外,还能将部分任务上传到空闲D2D设备进行辅助计算。首先,以最小化边缘网络的时延、能耗和费用为目标建立多目标优化问题。然后,在多染色体混合编码、自适应交叉率和变异率等方面对基于参考点的非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅢ,NSGA-Ⅲ)进行改进,使之适合DCM-PO模型中的多目标优化问题求解。最后,仿真结果表明,相比基准MEC模型,DCM-PO模型在多项性能指标上有明显优势。 展开更多
关键词 移动边缘计算 D2D 任务卸载 多目标优化 NSGA-
下载PDF
自动驾驶环境感知多任务去耦-融合算法
6
作者 廖存燚 郑毅 +2 位作者 刘玮瑾 于欢 刘守印 《计算机应用》 CSCD 北大核心 2024年第2期424-431,共8页
自动驾驶车辆在行驶过程中,需要对行人和车辆同时完成目标检测、实例分割和目标跟踪三个任务。提出一种基于深度学习的环境感知模型同时对三个任务进行多任务学习。首先,通过卷积神经网络对连续帧图像提取时空特征;然后,通过注意力机制... 自动驾驶车辆在行驶过程中,需要对行人和车辆同时完成目标检测、实例分割和目标跟踪三个任务。提出一种基于深度学习的环境感知模型同时对三个任务进行多任务学习。首先,通过卷积神经网络对连续帧图像提取时空特征;然后,通过注意力机制对时空特征进行去耦再融合,充分利用任务间的相关性,实现不同任务对时空特征的差异化选择;最后,为平衡不同任务间的学习速率,使用动态加权平均的方式对模型进行训练。在KITTI数据集上的实验结果表明,所提模型在目标检测方面,比CenterTrack模型F1得分提高了0.6个百分点;在目标跟踪方面,比TraDeS(Track to Detect and Segment)模型多目标跟踪精度(MOTA)提高了0.7个百分点;在实例分割方面,比SOLOv2(Segmenting Objects by LOcations version 2)模型AP_(50)和AP_(75)分别提高了7.4和3.9个百分点。 展开更多
关键词 自动驾驶 环境感知 目标检测 实例分割 目标跟踪 多任务学习
下载PDF
DRE-3DC:基于三维表征建模的篇章级关系抽取模型
7
作者 王宇 王震 +2 位作者 温立强 李伟平 赵文 《电子学报》 EI CAS CSCD 北大核心 2024年第9期2950-2960,共11页
篇章级关系抽取任务旨在从非结构化文档的多个句子中提取事实,是构建领域知识库和知识问答应用的关键环节,相较于句子级关系抽取,该任务既要求模型能够基于文档结构特征捕获实体间的复杂交互,还要应对严重的关系类别长尾分布问题.现有... 篇章级关系抽取任务旨在从非结构化文档的多个句子中提取事实,是构建领域知识库和知识问答应用的关键环节,相较于句子级关系抽取,该任务既要求模型能够基于文档结构特征捕获实体间的复杂交互,还要应对严重的关系类别长尾分布问题.现有基于表格的关系抽取模型主要对文档进行“实体/实体”二维建模,采用多层卷积网络或局部注意力机制提取实体间的交互特征,由于未显式对关系语义进行解耦建模,使得模型无法避免类别重叠影响和捕获关系的方向性特征,导致缺乏实体交互的充分语义信息.针对上述挑战,本文提出了一种基于三维表征建模的篇章级关系抽取模型DRE-3DC(Document-Level Relation Extraction with Three-Dimensional Representation Combination Modeling),对二维表格建模方式进行扩展,形成“实体/实体/关系”三维表征建模,采用基于形变卷积的三重注意力机制有效区分和聚合不同语义空间下的实体间及实体与关系的交互表征,自适应地增强模型对文档结构特征的聚合.同时,采用多任务学习方法增强模型对文档整体关系类别组合的感知来缓解篇章级关系抽取任务中的关系类别长尾分布问题.在DocRED和Revisit-DocRED两个篇章级关系抽取数据集上进行的实验结果表明,DRE-3DC模型性能良好,并通过消融实验、对比分析和实例分析,验证了本文所提方法的有效性. 展开更多
关键词 篇章级关系抽取 三维表征 三重注意力 形变卷积网络 多任务学习
下载PDF
Multi-task Coalition Parallel Formation Strategy Based on Reinforcement Learning 被引量:6
8
作者 JIANG Jian-Guo SU Zhao-Pin +1 位作者 QI Mei-Bin ZHANG Guo-Fu 《自动化学报》 EI CSCD 北大核心 2008年第3期349-352,共4页
代理人联盟是代理人协作和合作的一种重要方式。形成一个联盟,代理人能提高他们的能力解决问题并且获得更多的实用程序。在这份报纸,新奇多工联盟平行形成策略被介绍,并且多工联盟形成的过程是一个 Markov 决定过程的结论理论上被证... 代理人联盟是代理人协作和合作的一种重要方式。形成一个联盟,代理人能提高他们的能力解决问题并且获得更多的实用程序。在这份报纸,新奇多工联盟平行形成策略被介绍,并且多工联盟形成的过程是一个 Markov 决定过程的结论理论上被证明。而且,学习的加强被用来解决多工联盟平行的代理人行为策略,和这个过程形成被描述。在多工面向的领域,策略罐头有效地并且平行形式多工联盟。 展开更多
关键词 强化学习 多任务合并 平行排列 马尔可夫决策过程
下载PDF
A Distributed Algorithm for Parallel Multi-task Allocation Based on Profit Sharing Learning 被引量:7
9
作者 SU Zhao-Pin JIANG Jian-Guo +1 位作者 LIANG Chang-Yong ZHANG Guo-Fu 《自动化学报》 EI CSCD 北大核心 2011年第7期865-872,共8页
经由联盟形成的任务分配是在多代理人系统(妈) 的几应用程序域的基本研究挑战,例如资源分配,灾难反应管理等等。怎么以一种分布式的方式分配许多未解决的任务到一些代理人,主要处理。在这篇论文,我们在自我组织、自我学习的代理人... 经由联盟形成的任务分配是在多代理人系统(妈) 的几应用程序域的基本研究挑战,例如资源分配,灾难反应管理等等。怎么以一种分布式的方式分配许多未解决的任务到一些代理人,主要处理。在这篇论文,我们在自我组织、自我学习的代理人之中建议一个分布式的平行多工分配算法。处理状况,我们在二维的房间地理上驱散代理人和任务,然后介绍为寻找它的任务由的一个单个代理人的分享学习的利润(PSL ) 不断自我学习。我们也在代理人之中为通讯和协商介绍策略分配真实工作量到每个 tasked 代理人。最后,评估建议算法的有效性,我们把它与 Shehory 和 Krau 被许多研究人员在最近的年里讨论的分布式的任务分配算法作比较。试验性的结果证明建议算法罐头快速为每项任务形成一个解决的联盟。而且,建议算法罐头明确地告诉我们每个 tasked 代理人的真实工作量,并且能因此为实际控制任务提供一本特定、重要的参考书。 展开更多
关键词 自动化系统 自动化技术 ICA 数据处理
下载PDF
基于带阈值的BPE-dropout多任务学习的端到端语音识别
10
作者 马建 朵琳 +1 位作者 韦贵香 唐剑 《吉林大学学报(理学版)》 CAS 北大核心 2024年第3期674-682,共9页
针对语音识别任务中出现的未登录词问题,提出一种带阈值的BPE-dropout多任务学习语音识别方法.该方法采用带随机性的字节对编码算法,在形成子词时引入带字数阈值的策略,将子词作为建模单元,编码器部分采用Conformer结构,与链接时序分类... 针对语音识别任务中出现的未登录词问题,提出一种带阈值的BPE-dropout多任务学习语音识别方法.该方法采用带随机性的字节对编码算法,在形成子词时引入带字数阈值的策略,将子词作为建模单元,编码器部分采用Conformer结构,与链接时序分类和注意力机制相结合.为进一步提升模型性能,引入动态参数对损失函数进行动态调节,并同时进行多任务训练和解码.实验结果表明,该方法采用子词作为建模单元可有效解决未登录词问题,在多任务学习框架下进一步提升了模型的识别性能.在公开数据集THCHS30和ST-CMDS上,该模型实现了超过95%的识别准确率. 展开更多
关键词 语音识别 多任务学习 字节对编码 动态调节参数
下载PDF
基于编-解码器结构的无人机群多任务联邦学习
11
作者 周敬轩 包卫东 +1 位作者 王吉 张大宇 《西南交通大学学报》 EI CSCD 北大核心 2024年第4期933-941,共9页
针对传统联邦学习在无人机群应用中的局限性——要求所有参与者执行相同任务并拥有相同的模型结构,本文探索一种适用于无人机群的多任务联邦学习方法,设计一种新的编-解码器架构,以加强执行不同任务的无人机之间的知识共享.首先,为执行... 针对传统联邦学习在无人机群应用中的局限性——要求所有参与者执行相同任务并拥有相同的模型结构,本文探索一种适用于无人机群的多任务联邦学习方法,设计一种新的编-解码器架构,以加强执行不同任务的无人机之间的知识共享.首先,为执行相同任务的无人机建立直接的知识分享机制,通过直接聚合方式实现同任务知识的有效融合;其次,对于执行不同任务的无人机,从所有无人机的编-解码器架构中提取编码器部分,构建一个全局编码器;最后,在训练环节,将本地编码器和全局编码器的信息整合到损失函数中,并通过迭代更新使本地解码器逐步逼近全局解码器,从而实现跨任务间的知识高效共享.实验结果表明:相较于传统方法,所提出的方法使无人机群在3个单任务上的性能分别提升1.79%、0.37%和2.78%,仅在1个任务上性能略微下降0.38%,但整体性能仍提升2.38%. 展开更多
关键词 多任务学习 无人机群 联邦学习 -解码器结构
下载PDF
Face Detection Detection, Alignment Alignment, Quality Assessment and Attribute Analysis with Multi-Task Hybrid Convolutional Neural Networks 被引量:5
12
作者 GUO Da ZHENG Qingfang +1 位作者 PENG Xiaojiang LIU Ming 《ZTE Communications》 2019年第3期15-22,49,共9页
This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists ... This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA. 展开更多
关键词 FACE DETECTION FACE ALIGNMENT FACIAL ATTRIBUTE CNN multi-task training
下载PDF
GEA-NMT:图卷积增强的多任务低资源机器翻译模型
13
作者 张宝兴 彭敦陆 王雅峰 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2156-2164,共9页
在低资源语种上训练高质量机器翻译系统的主要障碍是平行语料的稀缺,一些低资源语言在语言上与高资源语言相关或相似,相似的语言可能使用相同的字符集或类似的句法结构.本文利用低资源语种上的单语数据及与之相关联的高资源语种和目标... 在低资源语种上训练高质量机器翻译系统的主要障碍是平行语料的稀缺,一些低资源语言在语言上与高资源语言相关或相似,相似的语言可能使用相同的字符集或类似的句法结构.本文利用低资源语种上的单语数据及与之相关联的高资源语种和目标语言的平行语料,尝试将翻译知识进行迁移,从而完成低资源语种和目标语言间的翻译模型训练.本文提出一种图卷积增强的多任务训练低资源神经机器翻译模型(GCN Enhanced multi-task Adapting Neural Machine Translation,GEA-NMT),结合降噪自编码器、生成对抗训练、回译和桥接方法,并使用图神经网络学习句法依赖关系以进一步提升低资源语种上的神经机器翻译模型效果. 展开更多
关键词 低资源神经机器翻译 图神经网络 多任务训练
下载PDF
一种多任务学习结合U-Net的微动脉瘤图像分割方法
14
作者 崔永俊 雷凯杰 马巧梅 《电子设计工程》 2024年第15期190-195,共6页
微动脉瘤是检测糖尿病初期视网膜病变的关键病灶,针对微动脉瘤图像分割问题,提出了多种图像预处理技术与多任务学习网络相结合的方法。该方法使用了多种图像预处理技术,在UNet中引入了注意力机制,并将微动脉瘤图像分割作为主任务,微动... 微动脉瘤是检测糖尿病初期视网膜病变的关键病灶,针对微动脉瘤图像分割问题,提出了多种图像预处理技术与多任务学习网络相结合的方法。该方法使用了多种图像预处理技术,在UNet中引入了注意力机制,并将微动脉瘤图像分割作为主任务,微动脉瘤存在性检测作为副任务,利用多任务学习结合U-Net来提升主任务分割效果。在国际公开数据集上进行实验,获得了AUC为9.48%以及AP为51.40%的结果,与单任务图像分割相比,AP值提升了3.82%,由实验结果可知该方法能够提升微动脉瘤的分割效果。 展开更多
关键词 深度学习 糖尿病视网膜病变 微动脉瘤 图像分割 多任务学习
下载PDF
Pedestrian Attributes Recognition in Surveillance Scenarios with Hierarchical Multi-Task CNN Models 被引量:2
15
作者 Wenhua Fang Jun Chen Ruimin Hu 《China Communications》 SCIE CSCD 2018年第12期208-219,共12页
Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one.... Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one. In this paper, we propose a joint hierarchical multi-task learning algorithm to learn the relationships among attributes for better recognizing the pedestrian attributes in still images using convolutional neural networks(CNN). We divide the attributes into local and global ones according to spatial and semantic relations, and then consider learning semantic attributes through a hierarchical multi-task CNN model where each CNN in the first layer will predict each group of such local attributes and CNN in the second layer will predict the global attributes. Our multi-task learning framework allows each CNN model to simultaneously share visual knowledge among different groups of attribute categories. Extensive experiments are conducted on two popular and challenging benchmarks in surveillance scenarios, namely, the PETA and RAP pedestrian attributes datasets. On both benchmarks, our framework achieves superior results over the state-of-theart methods by 88.2% on PETA and 83.25% on RAP, respectively. 展开更多
关键词 attributes RECOGNITION CNN multi-task learning
下载PDF
Gini Coefficient-based Task Allocation for Multi-robot Systems With Limited Energy Resources 被引量:7
16
作者 Danfeng Wu Guangping Zeng +2 位作者 Lingguo Meng Weijian Zhou Linmin Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期155-168,共14页
Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy sup... Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals. 展开更多
关键词 Energy resource constraints Gini coefficient multi-robot systems task allocation
下载PDF
基于特征筛选的综合能源系统多元负荷日前-日内预测
17
作者 徐聪 胡永锋 +1 位作者 张爱平 由长福 《综合智慧能源》 CAS 2024年第3期45-53,共9页
负荷预测是指导综合能源系统调度与运行的前提。为更加经济高效地实施系统日前计划、日内优化,提出一种基于特征筛选的多元负荷日前-日内预测方法。首先,结合特征工程中3类特征筛选方法筛选预测模型输入特征,简化模型的同时能够保存下... 负荷预测是指导综合能源系统调度与运行的前提。为更加经济高效地实施系统日前计划、日内优化,提出一种基于特征筛选的多元负荷日前-日内预测方法。首先,结合特征工程中3类特征筛选方法筛选预测模型输入特征,简化模型的同时能够保存下最重要的特征,针对日前-日内预测策略分别确立输入特征集;然后通过多任务学习硬共享机制,采用长短期记忆神经网络建立预测模型,实现不同子任务信息共享,并通过随机搜索方法优化网络参数以提高预测精度;最后以北京某产业园区供暖季电、热负荷为案例进行分析,日前、日内预测综合精度分别达到91.3%和95.2%。分析结果表明,该预测方法能够为系统日前调度和日内运行优化提供良好支撑,且预测结果优于未经特征筛选预测和单独负荷预测,证明了该预测方法具有更高的预测精度。 展开更多
关键词 综合能源系统 多元负荷 特征筛选 日前-日内预测 多任务学习 长短期记忆神经网络
下载PDF
Algorithm Design of CPCI Backboard's Interrupts Management Based on VxWorks'Multi-Tasks 被引量:1
18
作者 程敬原 安琪 杨俊峰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第5期614-617,共4页
This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, int... This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, interrupts handling and multi-tasks programming interface under VxWorks, and then emphasis is placed on the software frameworks of CPCI interrupt management based on multi-tasks. This method is sound in design and easy to adapt, ensures that all possible interrupts are handled in time, which makes it suitable for data acquisition systems with multi-channels, a high data rate, and hard real-time high energy physics. 展开更多
关键词 VXWORKS PCI multi-tasks backcard's interrupt handling
下载PDF
基于MSFA-Net的车辆及车道线检测算法
19
作者 文斌 丁弈夫 +2 位作者 胡一鸣 彭顺 胡晖 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第3期433-442,共10页
车辆检测与车道线分割是自动驾驶感知系统的重要组成部分,其基本要求是具有高精度和实时性。鉴此提出一种双任务多尺度特征聚合网络(MSFA-Net),该网络由1个特征提取网络和2个检测分支网络构成,实现了车辆和车道线同时检测。首先使用E-E... 车辆检测与车道线分割是自动驾驶感知系统的重要组成部分,其基本要求是具有高精度和实时性。鉴此提出一种双任务多尺度特征聚合网络(MSFA-Net),该网络由1个特征提取网络和2个检测分支网络构成,实现了车辆和车道线同时检测。首先使用E-ELAN网络构造共享主干特征网络;在车辆检测分支网络设计增强卷积模块(CBS+)进行自下而上的特征融合以提升精度;在车道线检测分支网络使用特征融合模块(FeatFuse)对多分辨率特征进行自适应加权融合,配合空洞卷积语义感知模块(CDBS)使用梯形结构的多空洞值卷积对融合特征进行采样,以提升不连续车道线及其他非线性车道的分割精度。结果表明:在BDD100K数据集上,该文网络MSFA-Net其平均精度均值、召回率、像素准确率分别达到了81.3%、90.1%和80.1%,检测帧率达到了41.6帧/s,能较好适应真实行车环境的需求。 展开更多
关键词 车辆检测 交通图像 深度学习 车道线分割 双任务多尺度特征聚合网络(MSFA-Net)
下载PDF
Genetic Algorithm Based Combinatorial Auction Method for Multi-Robot Task Allocation 被引量:1
20
作者 龚建伟 黄宛宁 +1 位作者 熊光明 满益明 《Journal of Beijing Institute of Technology》 EI CAS 2007年第2期151-156,共6页
An improved genetic algorithm is proposed to solve the problem of bad real-time performance or inability to get a global optimal/better solution when applying single-item auction (SIA) method or combinatorial auctio... An improved genetic algorithm is proposed to solve the problem of bad real-time performance or inability to get a global optimal/better solution when applying single-item auction (SIA) method or combinatorial auction method to multi-robot task allocation. The genetic algorithm based combinatorial auction (GACA) method which combines the basic-genetic algorithm with a new concept of ringed chromosome is used to solve the winner determination problem (WDP) of combinatorial auction. The simulation experiments are conducted in OpenSim, a multi-robot simulator. The results show that GACA can get a satisfying solution in a reasonable shot time, and compared with SIA or parthenogenesis algorithm combinatorial auction (PGACA) method, it is the simplest and has higher search efficiency, also, GACA can get a global better/optimal solution and satisfy the high real-time requirement of multi-robot task allocation. 展开更多
关键词 multi-ROBOT task allocation combinatorial auctions genetic algorithm
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部