Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components...Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.展开更多
Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure...Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure tire theory model is used as the input criteria of the suspension multibody system dynamic model in order to simulate the suspension K&C characteristics test.Then,it is important to verify the accuracy of this model by comparing and analyzing the experimental data and simulation results.The results show that the model has high precision and can predict the performance of the vehicle.It also provides a new solution for the vehicle dynamic modeling.展开更多
The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed par...The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.展开更多
In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting sy...In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting system is established. Under the four-grade and six-grade oceanic condition, dynamic responses of lifting system are simulated and experiment verified. The simulation results are consistent with experimental ones. The maximum moment of flexion is 322 kN-m on the first pipe under six-grade sea condition. It is seen that the articulated connection can reduce the moment of flexion. The bending deformation of pipe center is researched, and the maximum is 0. 000479 m on the first pipe. Deformation has a little effect on the motion of system. It is feasible to analyze articulated lifting system by applying the theory of flexible multi-body dynamics. The articulated lifting system is obviously better than the fixed one.展开更多
Due to the mobility of users in an organization,inclusion of dynamic attributes such as time and location becomes the major challenge in Ciphertext-Policy Attribute-Based Encryption(CP-ABE).By considering this challen...Due to the mobility of users in an organization,inclusion of dynamic attributes such as time and location becomes the major challenge in Ciphertext-Policy Attribute-Based Encryption(CP-ABE).By considering this challenge;we focus to present dynamic time and location information in CP-ABE with mul-ti-authorization.Atfirst,along with the set of attributes of the users,their corre-sponding location is also embedded.Geohash is used to encode the latitude and longitude of the user’s position.Then,decrypt time period and access time period of users are defined using the new time tree(NTT)structure.The NTT sets the encrypted duration of the encrypted data and the valid access time of the private key on the data user’s private key.Besides,single authorization of attribute authority(AA)is extended as multi authorization for enhancing the effectiveness of key generation.Simulation results depict that the proposed CP-ABE achieves better encryption time,decryption time,security level and memory usage.Namely,encryption time and decryption time of the proposed CP-ABE are reduced to 19%and 16%than that of existing CP-ABE scheme.展开更多
The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not con...The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.展开更多
In this paper, we study worm dynamics in computer networks composed of many autonomous systems. A novel multigroup SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly c...In this paper, we study worm dynamics in computer networks composed of many autonomous systems. A novel multigroup SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly considering anti-virus measures and the network infrastructure. Then, the basic reproduction number of worm R0 is derived and the global dynamics of the model are established. It is shown that if R0 is less than or equal to 1, the disease-free equilibrium is globally asymptotically stable and the worm dies out eventually, whereas, if R0 is greater than 1, one unique endemic equilibrium exists and it is globally asymptotically stable, thus the worm persists in the network. Finally, numerical simulations are given to illustrate the theoretical results.展开更多
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose...The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.展开更多
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud...In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.展开更多
The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle veloci...The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improved method keeps the same computational cost of the order O(NlogN) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help of Mont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.展开更多
This paper discusses the problem of impact dynamics between two multi-rigidbody systems, and presents the mathematical model of this kind of impact problem. In this model the impact impulses at collision points are no...This paper discusses the problem of impact dynamics between two multi-rigidbody systems, and presents the mathematical model of this kind of impact problem. In this model the impact impulses at collision points are not coupled with the increments of the velocities, and they are also suitable for computer coding. So the model obtained in this paper is of practical value.展开更多
Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of ...Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of the double-walled carbon nanotubes (DWCNTs) with two different temperature control methods are studied by using molecular dynamics (MD) simulations. One case is that the heat baths (HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the inter- wall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently. This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs.展开更多
Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitat...Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitation. A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. A one-to- one internal resonance is considered. An averaged equation is obtained with a multi-scale method. After transforming the averaged equation into a standard form, the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics, which can be used to explain the mechanism of modal interactions of thin plates. A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits. Furthermore, restrictions on the damping, excitation, and detuning parameters are obtained, under which the multi-pulse chaotic dynamics is expected. The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.展开更多
This paper deals with the distributed consensus problem of high-order multi-agent systems with nonlinear dynamics subject to external disturbances. The network topology is assumed to be a fixed undirected graph. Some ...This paper deals with the distributed consensus problem of high-order multi-agent systems with nonlinear dynamics subject to external disturbances. The network topology is assumed to be a fixed undirected graph. Some sufficient conditions are derived, under which the consensus can be achieved with a prescribed norm bound. It is shown that the parameter matrix in the consensus algorithm can be designed by solving two linear matrix inequalities (LMIs). In particular, if the nonzero eigenvalues of the laplacian matrix ac-cording to the network topology are identical, the parameter matrix in the consensus algorithm can be de-signed by solving one LMI. A numerical example is given to illustrate the proposed results.展开更多
For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element m...For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.展开更多
Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in...Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.展开更多
The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance...The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine.展开更多
The muhi-body analysis of the aeroelastic stability of the tiltrotor aircraft is presented. Muhi-body dynamic differential equations are combined with the equations of the unsteady dynamic inflow model to establish th...The muhi-body analysis of the aeroelastic stability of the tiltrotor aircraft is presented. Muhi-body dynamic differential equations are combined with the equations of the unsteady dynamic inflow model to establish the complete unsteadily aeroelastic coupling analytical model of the tiltrotor. The stability of the tiltrotor in the helicopter mode is analyzed aiming at a semi span soft-inplane tihrotor model with an elastic wing. Parametric effects of the lag stiffness of blades and the flight speed are analyzed. Numerical simulations demonstrate that the multibody analytical model can analyze the aeroelastic stability of the tiltrotor aircraft in the helicopter mode.展开更多
The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shear...The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shearer.In this paper,the vibration properties of a double drum coal shearer are firstly investigated.The horizontal,transverse and torsional vibrations of the motor body and the angle displacements of the rockers are taken into account.The walking units and the hydraulic units are modeled by the stiffness-damping systems.The nonlinear equation of motion of the double drum coal shearer is established by applying the Lagrange’s equation.The nonlinear vibration response of the system is calculated by using the Runge Kutta numerical method.The effects of the shearing loads,the equivalent damping and stiffness of the walking units,the inclination angels of the rockers and the equivalent damping and stiffness of the hydraulic units on the vibration properties of the system are discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51175484)the Science Foundation of Shandong Province (Grant No. ZR2010EM052)
文摘Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.
基金Supported by the National Key Research and Development Program of China(2017YFB0103801)
文摘Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure tire theory model is used as the input criteria of the suspension multibody system dynamic model in order to simulate the suspension K&C characteristics test.Then,it is important to verify the accuracy of this model by comparing and analyzing the experimental data and simulation results.The results show that the model has high precision and can predict the performance of the vehicle.It also provides a new solution for the vehicle dynamic modeling.
文摘The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.
基金This research project was financially supported by China Ocean Mineral Resources R&D Association(Grant No.DY105-03-02-17)Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20060008025)
文摘In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting system is established. Under the four-grade and six-grade oceanic condition, dynamic responses of lifting system are simulated and experiment verified. The simulation results are consistent with experimental ones. The maximum moment of flexion is 322 kN-m on the first pipe under six-grade sea condition. It is seen that the articulated connection can reduce the moment of flexion. The bending deformation of pipe center is researched, and the maximum is 0. 000479 m on the first pipe. Deformation has a little effect on the motion of system. It is feasible to analyze articulated lifting system by applying the theory of flexible multi-body dynamics. The articulated lifting system is obviously better than the fixed one.
文摘Due to the mobility of users in an organization,inclusion of dynamic attributes such as time and location becomes the major challenge in Ciphertext-Policy Attribute-Based Encryption(CP-ABE).By considering this challenge;we focus to present dynamic time and location information in CP-ABE with mul-ti-authorization.Atfirst,along with the set of attributes of the users,their corre-sponding location is also embedded.Geohash is used to encode the latitude and longitude of the user’s position.Then,decrypt time period and access time period of users are defined using the new time tree(NTT)structure.The NTT sets the encrypted duration of the encrypted data and the valid access time of the private key on the data user’s private key.Besides,single authorization of attribute authority(AA)is extended as multi authorization for enhancing the effectiveness of key generation.Simulation results depict that the proposed CP-ABE achieves better encryption time,decryption time,security level and memory usage.Namely,encryption time and decryption time of the proposed CP-ABE are reduced to 19%and 16%than that of existing CP-ABE scheme.
基金supported by National Natural Science Foundation of China(Grant No.50875112)PhD Programs Foundation of Ministry of Education of China(Grant No.20093227110013)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK2010337)Natural Science Foundation of Higher Education of Jiangsu Province,China(Grant No.09KJA580001)
文摘The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (60934003, 61074065), Key Project for Natural Science Research of Hebei Education Department (ZD200908), and the Doctor Foundation of Northeastern University at Qinhuangdao(XNB201507)
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526)the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. SJ209006)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003)the Ministry of Education Research in the Humanities and Social Sciences Planning Fund of China (Grant No. 12YJAZH120)the Graduate Student Innovation Research Project of Jiangsu Province, China (Grant Nos. CXLX11 0417 and CXLX11 0404)
文摘In this paper, we study worm dynamics in computer networks composed of many autonomous systems. A novel multigroup SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly considering anti-virus measures and the network infrastructure. Then, the basic reproduction number of worm R0 is derived and the global dynamics of the model are established. It is shown that if R0 is less than or equal to 1, the disease-free equilibrium is globally asymptotically stable and the worm dies out eventually, whereas, if R0 is greater than 1, one unique endemic equilibrium exists and it is globally asymptotically stable, thus the worm persists in the network. Finally, numerical simulations are given to illustrate the theoretical results.
文摘The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.
基金supported by the Natural Science Foundation of China Government (10902051)the Natural Science Foundation of Jiangsu Province (BK2008046)the German Science Foundation
文摘In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.
基金the National Natural Science Foundation of China (10332050 and 10572144)Knowledge Innovation Program (KJCX-SW-L08)
文摘The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improved method keeps the same computational cost of the order O(NlogN) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help of Mont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.
文摘This paper discusses the problem of impact dynamics between two multi-rigidbody systems, and presents the mathematical model of this kind of impact problem. In this model the impact impulses at collision points are not coupled with the increments of the velocities, and they are also suitable for computer coding. So the model obtained in this paper is of practical value.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322603,51136001,and 51356001)the Program for New Century Excellent Talents in University,Science Fund for Creative Research Groups of China(Grant No.51321002)the Initiative Scientific Research Program of Tsinghua University,China
文摘Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of the double-walled carbon nanotubes (DWCNTs) with two different temperature control methods are studied by using molecular dynamics (MD) simulations. One case is that the heat baths (HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the inter- wall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently. This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs.
基金Project supported the National Natural Science Foundation of China (Nos. 10732020,11072008,and 11102226)the Scientific Research Foundation of Civil Aviation University of China (No. 2010QD04X)the Fundamental Research Funds for the Central Universities of China (Nos. ZXH2011D006 and ZXH2012K004)
文摘Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitation. A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. A one-to- one internal resonance is considered. An averaged equation is obtained with a multi-scale method. After transforming the averaged equation into a standard form, the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics, which can be used to explain the mechanism of modal interactions of thin plates. A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits. Furthermore, restrictions on the damping, excitation, and detuning parameters are obtained, under which the multi-pulse chaotic dynamics is expected. The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.
文摘This paper deals with the distributed consensus problem of high-order multi-agent systems with nonlinear dynamics subject to external disturbances. The network topology is assumed to be a fixed undirected graph. Some sufficient conditions are derived, under which the consensus can be achieved with a prescribed norm bound. It is shown that the parameter matrix in the consensus algorithm can be designed by solving two linear matrix inequalities (LMIs). In particular, if the nonzero eigenvalues of the laplacian matrix ac-cording to the network topology are identical, the parameter matrix in the consensus algorithm can be de-signed by solving one LMI. A numerical example is given to illustrate the proposed results.
文摘For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.
基金This project is supported by National Natural Science Foundation of China (No.50375026)Provincial Fifteen Great Public Bidding Items of Jiangsu (No.BE2001068).
文摘Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.
文摘The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine.
文摘The muhi-body analysis of the aeroelastic stability of the tiltrotor aircraft is presented. Muhi-body dynamic differential equations are combined with the equations of the unsteady dynamic inflow model to establish the complete unsteadily aeroelastic coupling analytical model of the tiltrotor. The stability of the tiltrotor in the helicopter mode is analyzed aiming at a semi span soft-inplane tihrotor model with an elastic wing. Parametric effects of the lag stiffness of blades and the flight speed are analyzed. Numerical simulations demonstrate that the multibody analytical model can analyze the aeroelastic stability of the tiltrotor aircraft in the helicopter mode.
基金Projects(51975511,U1708254)supported by the National Natural Science Foundation of ChinaProject(N2003023)supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(2019YFB2004400)supported by the National Key Research and Development Program of ChinaProject(2020-MS-092)supported by the Natural Science Foundation of Liaoning Province,China。
文摘The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shearer.In this paper,the vibration properties of a double drum coal shearer are firstly investigated.The horizontal,transverse and torsional vibrations of the motor body and the angle displacements of the rockers are taken into account.The walking units and the hydraulic units are modeled by the stiffness-damping systems.The nonlinear equation of motion of the double drum coal shearer is established by applying the Lagrange’s equation.The nonlinear vibration response of the system is calculated by using the Runge Kutta numerical method.The effects of the shearing loads,the equivalent damping and stiffness of the walking units,the inclination angels of the rockers and the equivalent damping and stiffness of the hydraulic units on the vibration properties of the system are discussed.