The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
The vehicle routing problem with time windows (VRPTW) involves assigning a fleet of limited capacity vehicles to serve a set of customers without violating the capacity and time constraints. This paper presents a mu...The vehicle routing problem with time windows (VRPTW) involves assigning a fleet of limited capacity vehicles to serve a set of customers without violating the capacity and time constraints. This paper presents a multi-agent model system for the VRPTW based on the internal behavior of agents and coordination among the agents. The system presents a formal view of coordination using the traditional contract-net protocol (CNP) that relies on the basic loop of agent behavior for order receiving, order announcement, bid calculation, and order scheduling followed by order execution. An improved CNP method based on a vehicle selection strategy is used to reduce the number of negotiations and the negotiation time. The model is validated using Solomon's benchmarks, with the results showing that the improved CNP uses only 30% as many negotiations and only 70% of the negotiation time of the traditional CNP.展开更多
该文研究带时间窗约束的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),这是一个典型的NP-Hard问题。针对传统粒子群算法求解带时间窗约束的车辆路径问题容易陷入局部最优的缺陷,提出了一种基于多策略方法改进的粒子...该文研究带时间窗约束的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),这是一个典型的NP-Hard问题。针对传统粒子群算法求解带时间窗约束的车辆路径问题容易陷入局部最优的缺陷,提出了一种基于多策略方法改进的粒子群算法(Multi-Strategy improved particle Swarm Optimization Algorithm,MSPSO)来解决该问题。该算法采用惯性权重递减策略,使得算法在前期的全局搜索和后期的局部搜索都能够有良好的表现,通过引入随机选择策略更新粒子最优位置,可以增加解空间的多样性,有效避免算法陷入局部最优。最后通过测试Solomon Benchmark算例的结果,在25个客户的C103数据集上MSPSO算法对比RWPSO算法的行驶距离降低了38.29,对比S-PSO算法在C103、R103这两个数据集与最优解误差分别降低了1.76%和3.99%。在50个客户C1系列数据集上MSPSO算法对比PSO算法行驶距离分别减少了14.26、45.66、67.7,与数据集的最优解误差基本能保持在1%以内。从实验结果可以证明MSPSO算法在求解VRPTW问题方面具有优越性和有效性。展开更多
针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最...针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最大化客户满意度的多目标模型。根据模型的特点设计了改进的哈里斯鹰优化(improved Harris hawks optimization,IHHO)算法,随机地将种群中部分支配解作为父代解,用临时组合算子和4种交叉算子搜索新解。最后,算例测试结果表明,相较于传统的哈里斯鹰优化算法,IHHO算法的求解性能得到了有效改善,各操作算子中交叉算子2的求解效果最好。将IHHO算法用于实例中,求解结果得到了改善,充分验证了IHHO算法的有效性。展开更多
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
文摘The vehicle routing problem with time windows (VRPTW) involves assigning a fleet of limited capacity vehicles to serve a set of customers without violating the capacity and time constraints. This paper presents a multi-agent model system for the VRPTW based on the internal behavior of agents and coordination among the agents. The system presents a formal view of coordination using the traditional contract-net protocol (CNP) that relies on the basic loop of agent behavior for order receiving, order announcement, bid calculation, and order scheduling followed by order execution. An improved CNP method based on a vehicle selection strategy is used to reduce the number of negotiations and the negotiation time. The model is validated using Solomon's benchmarks, with the results showing that the improved CNP uses only 30% as many negotiations and only 70% of the negotiation time of the traditional CNP.
文摘该文研究带时间窗约束的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),这是一个典型的NP-Hard问题。针对传统粒子群算法求解带时间窗约束的车辆路径问题容易陷入局部最优的缺陷,提出了一种基于多策略方法改进的粒子群算法(Multi-Strategy improved particle Swarm Optimization Algorithm,MSPSO)来解决该问题。该算法采用惯性权重递减策略,使得算法在前期的全局搜索和后期的局部搜索都能够有良好的表现,通过引入随机选择策略更新粒子最优位置,可以增加解空间的多样性,有效避免算法陷入局部最优。最后通过测试Solomon Benchmark算例的结果,在25个客户的C103数据集上MSPSO算法对比RWPSO算法的行驶距离降低了38.29,对比S-PSO算法在C103、R103这两个数据集与最优解误差分别降低了1.76%和3.99%。在50个客户C1系列数据集上MSPSO算法对比PSO算法行驶距离分别减少了14.26、45.66、67.7,与数据集的最优解误差基本能保持在1%以内。从实验结果可以证明MSPSO算法在求解VRPTW问题方面具有优越性和有效性。
文摘针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最大化客户满意度的多目标模型。根据模型的特点设计了改进的哈里斯鹰优化(improved Harris hawks optimization,IHHO)算法,随机地将种群中部分支配解作为父代解,用临时组合算子和4种交叉算子搜索新解。最后,算例测试结果表明,相较于传统的哈里斯鹰优化算法,IHHO算法的求解性能得到了有效改善,各操作算子中交叉算子2的求解效果最好。将IHHO算法用于实例中,求解结果得到了改善,充分验证了IHHO算法的有效性。