The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain varia...An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.展开更多
In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient...In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient solution to the MOLFP problem, this modified method provides multiple efficient solutions to the problem. As a result, it provides the decision makers flexibility to choose a better option from alternatives according to their financial position and their level of satisfaction of objectives. A numerical example is provided to illustrate the modified method and also a real life oriented production problem is modeled and solved.展开更多
According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy m...According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy mathematics. Based on calculation of basic parameters for tl1e formation of production, near-tem optimum models of tropical crops structure of each region was established by means of multi-objective programming, and a far-term grey programming model was set up through the above-mentioned near-term model and prediction of future parameters. Conclusion shows that the near-term programming may raise the profit by 5. 1-55.7 percent and far-tem programming by 54-90 percent, both gainingobvious economic benefits.展开更多
The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-o...The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.展开更多
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro...To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.展开更多
In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to constr...In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to construct two artificial multiobjective programming problems such that any point that is efficient for both the two problems is an efficient solution of the BMPP. Some necessary and sufficient conditions for which the obtained result is applicable are provided. A complete procedure of the implementation of an algorithm for generating efficient solutions for the linear case of BMPP is presented. A numerical example is provided to illustrate how the algorithm operates.展开更多
This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, a...This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, and compactness, contractibility and fixed point properties of the Pareto sets. The authors have tried to remove the concavity assumptions on the objective functions which are usually used in multi-objective maximization problems. The results are based on constructing a retraction from the feasible domain onto the Pareto-optimal set.展开更多
Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transpor...Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.展开更多
In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions fo...In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.展开更多
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu...In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.展开更多
This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected...This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
Two multi-objective programming models are built to describe Pilots’ full flight simulator (FFS) recurrent training (PFRT) problem. There are two objectives for them. One is the best matching of captains and copilots...Two multi-objective programming models are built to describe Pilots’ full flight simulator (FFS) recurrent training (PFRT) problem. There are two objectives for them. One is the best matching of captains and copilots in the same aircraft type. The other is that pilots could attend his training courses at proper month. Usually the two objectives are conflicting because there are copilots who will promote to captains or transfer to other aircraft type and new trainees will enter the company every year. The main theme in the research is to find the final non-inferior solutions of PFRT problem. Graph models are built to help to analyze the problem and we convert the original problem into a longest-route problem with weighted paths. An algorithm is designed with which we can obtain all the non-inferior solutions by a graphic method. A case study is present to demonstrate the effectiveness of the algorithm as well.展开更多
This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to ...This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.展开更多
Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river...Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.展开更多
In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on ...In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on as the background of this research. They deal with the common quantities of their products, but due to their different environments, the optimal production quantity of one part can be unacceptable to another part and it may suffer a heavy loss. To avoid that kind of unacceptable situations, the common production quantities should be acceptable to all parts in one supply chain. Therefore, the motivation of this research is the necessity of the method to find the production quantities that make all decision makers acceptable is needed. However, it is difficult to find the production quantities that make all decision makers acceptable. Moreover, their acceptable ranges do not always have common ranges. In the decision making of car design, there are similar situations to this type of decision making. The performance of a car consists of purposes such as fuel efficiency, size and so on. Improving one purpose makes another worse and the relationship between these purposes is tradeoff. In these cases, Suriawase process is applied. This process consists of negotiations and reviews of the requirements of the purposes. In the step of negotiations, the requirements of the purposes are share among all decision makers and the solution that makes them as satisfied as possible. In the step of reviews of the requirements, they are reviewed based on the result of the negotiation if the result is unacceptable to some of decision makers. Therefore, through the iterations of the two steps, the solution that makes all decision makers satisfied is obtained. However, in the previous research, the effects that one decision maker reviews requirements in Suriawase process are quantified, but the mathematical model to modify the ranges of production quantities of all decision makers simultaneously is not shown. Therefore, in this research, based on Suriawase process, the mathematical model of multi-player multi-objective decision making is proposed. The mathematical model of multi-player multi-objective decision making by using linear physical programming (LPP) and robust optimization (RO) in the previous research is the basis of the methods of this research. LPP is one of the multi-objective optimization methods and RO is used to make the balance of the preference levels among decision makers. In LPP, the preference ranges of all objective functions are needed, so as the hypothesis of this research. In the research referred in this research, the method to control the effect of RO is not shown. If the effect of RO is too big, the average of the preference level becomes worse. The purpose of this research is to reproduce the mathematical model of multi-player multi-objective decision making based on Suriawase process and propose the method to control the effect of RO. In the proposed model, a set of the solutions of the negotiation problem is obtained and it is proved by the result of the numerical experiment. Therefore, the conclusion that the proposed model is available to obtain a set of the solutions of the negotiation problems in supply chain.展开更多
This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modifie...This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.展开更多
The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command ar...The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.展开更多
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金supported by the National Natural Science Foundation of China(71601183 71571190)
文摘An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.
文摘In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient solution to the MOLFP problem, this modified method provides multiple efficient solutions to the problem. As a result, it provides the decision makers flexibility to choose a better option from alternatives according to their financial position and their level of satisfaction of objectives. A numerical example is provided to illustrate the modified method and also a real life oriented production problem is modeled and solved.
文摘According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy mathematics. Based on calculation of basic parameters for tl1e formation of production, near-tem optimum models of tropical crops structure of each region was established by means of multi-objective programming, and a far-term grey programming model was set up through the above-mentioned near-term model and prediction of future parameters. Conclusion shows that the near-term programming may raise the profit by 5. 1-55.7 percent and far-tem programming by 54-90 percent, both gainingobvious economic benefits.
文摘The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.
基金Supported by the National Natural Science Foundation of China(71103034)the Natural Science Foundation of Jiangsu Province(bk2011084)
文摘To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.
文摘In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to construct two artificial multiobjective programming problems such that any point that is efficient for both the two problems is an efficient solution of the BMPP. Some necessary and sufficient conditions for which the obtained result is applicable are provided. A complete procedure of the implementation of an algorithm for generating efficient solutions for the linear case of BMPP is presented. A numerical example is provided to illustrate how the algorithm operates.
文摘This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, and compactness, contractibility and fixed point properties of the Pareto sets. The authors have tried to remove the concavity assumptions on the objective functions which are usually used in multi-objective maximization problems. The results are based on constructing a retraction from the feasible domain onto the Pareto-optimal set.
文摘Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.
文摘In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
文摘In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.
文摘This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘Two multi-objective programming models are built to describe Pilots’ full flight simulator (FFS) recurrent training (PFRT) problem. There are two objectives for them. One is the best matching of captains and copilots in the same aircraft type. The other is that pilots could attend his training courses at proper month. Usually the two objectives are conflicting because there are copilots who will promote to captains or transfer to other aircraft type and new trainees will enter the company every year. The main theme in the research is to find the final non-inferior solutions of PFRT problem. Graph models are built to help to analyze the problem and we convert the original problem into a longest-route problem with weighted paths. An algorithm is designed with which we can obtain all the non-inferior solutions by a graphic method. A case study is present to demonstrate the effectiveness of the algorithm as well.
文摘This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.
文摘Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.
文摘In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on as the background of this research. They deal with the common quantities of their products, but due to their different environments, the optimal production quantity of one part can be unacceptable to another part and it may suffer a heavy loss. To avoid that kind of unacceptable situations, the common production quantities should be acceptable to all parts in one supply chain. Therefore, the motivation of this research is the necessity of the method to find the production quantities that make all decision makers acceptable is needed. However, it is difficult to find the production quantities that make all decision makers acceptable. Moreover, their acceptable ranges do not always have common ranges. In the decision making of car design, there are similar situations to this type of decision making. The performance of a car consists of purposes such as fuel efficiency, size and so on. Improving one purpose makes another worse and the relationship between these purposes is tradeoff. In these cases, Suriawase process is applied. This process consists of negotiations and reviews of the requirements of the purposes. In the step of negotiations, the requirements of the purposes are share among all decision makers and the solution that makes them as satisfied as possible. In the step of reviews of the requirements, they are reviewed based on the result of the negotiation if the result is unacceptable to some of decision makers. Therefore, through the iterations of the two steps, the solution that makes all decision makers satisfied is obtained. However, in the previous research, the effects that one decision maker reviews requirements in Suriawase process are quantified, but the mathematical model to modify the ranges of production quantities of all decision makers simultaneously is not shown. Therefore, in this research, based on Suriawase process, the mathematical model of multi-player multi-objective decision making is proposed. The mathematical model of multi-player multi-objective decision making by using linear physical programming (LPP) and robust optimization (RO) in the previous research is the basis of the methods of this research. LPP is one of the multi-objective optimization methods and RO is used to make the balance of the preference levels among decision makers. In LPP, the preference ranges of all objective functions are needed, so as the hypothesis of this research. In the research referred in this research, the method to control the effect of RO is not shown. If the effect of RO is too big, the average of the preference level becomes worse. The purpose of this research is to reproduce the mathematical model of multi-player multi-objective decision making based on Suriawase process and propose the method to control the effect of RO. In the proposed model, a set of the solutions of the negotiation problem is obtained and it is proved by the result of the numerical experiment. Therefore, the conclusion that the proposed model is available to obtain a set of the solutions of the negotiation problems in supply chain.
文摘This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.
文摘The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.