Over-the-air computation(AirComp)based federated learning(FL)has been a promising technique for distilling artificial intelligence(AI)at the network edge.However,the performance of AirComp-based FL is decided by the d...Over-the-air computation(AirComp)based federated learning(FL)has been a promising technique for distilling artificial intelligence(AI)at the network edge.However,the performance of AirComp-based FL is decided by the device with the lowest channel gain due to the signal alignment property.More importantly,most existing work focuses on a single-cell scenario,where inter-cell interference is ignored.To overcome these shortages,a reconfigurable intelligent surface(RIS)-assisted AirComp-based FL system is proposed for multi-cell networks,where a RIS is used for enhancing the poor user signal caused by channel fading,especially for the device at the cell edge,and reducing inter-cell interference.The convergence of FL in the proposed system is first analyzed and the optimality gap for FL is derived.To minimize the optimality gap,we formulate a joint uplink and downlink optimization problem.The formulated problem is then divided into two separable nonconvex subproblems.Following the successive convex approximation(SCA)method,we first approximate the nonconvex term to a linear form,and then alternately optimize the beamforming vector and phase-shift matrix for each cell.Simulation results demonstrate the advantages of deploying a RIS in multi-cell networks and our proposed system significantly improves the performance of FL.展开更多
In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were prop...In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.展开更多
In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topolog...In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topology has allowed the voltage stresses of the converter to be distributed among several switching cells. Secondly, divide the input voltage into several fractions to reduce the number of power semiconductors to be switched. In this contribution, the general topology of this micro-inverter has been described and the simulation tests developed to validate its operation have been presented. Finally, we discussed the simulation results, the efficiency of this topology and the feasibility of its use in a grid-connected photovoltaic production system.展开更多
Monitoring the service condition of concrete structures requires the quantitative assessment of properties and corrosion rate of structural steels surrounded by concrete.A multi-cell sensor system that included a refe...Monitoring the service condition of concrete structures requires the quantitative assessment of properties and corrosion rate of structural steels surrounded by concrete.A multi-cell sensor system that included a reference electrode,a chloride content sensor,a macrocell current unit and an electrical resistance measurement unit was developed.This system provided the following important electrochemical data in the cover-zone concrete on site:open circuit potential,macrocell current from anodes to cathode,chloride profile,concrete resistance and corrosion rate of built-in anodes.The experimental results show that the macrocell current increases when the chloride content in concrete is higher.Thus,monitoring the chloride content is a good method for monitoring the corrosion state.The chloride ion content and cover depth are the key factors that affect the electrical resistance of concrete.Without considering the temperature and time,a simplified model of the instantaneous corrosion rate of steel rebar in a concrete structure based on the measured chloride contents and concrete resistance was proposed.The test results further prove the reliability of this simplified predicting model.展开更多
In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different obli...In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.展开更多
Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the exis...Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the existing efficient radio resource allocation algorithms do not consider. The efficient radio resource allocation algorithm, i.e., Pre-assignment and Reassignment (PR) algorithm, obtains the lowest complexity and achieves good throughput performance in single cell OFDMA system. However, in multi-cell multi-sector OFDMA networks, PR algorithm is not applicable because it does not take ICI into consideration. The proposed PIB algorithm balances the number of loading bits for the desired User Equipment (UE) and the major interfering UE, as well as optimizes the SINR performance; meanwhile, IBLA avoids loading certain number of interfering bits which would make SINR unqualified. Simulations confirm the ICI management effectiveness and feasibility of both the proposals.展开更多
A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of th...A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.展开更多
For the cooperative multi-cell systems with muki-user MIMO, a new limited feedback bit allocation scheme is proposed to minimize the rate loss caused by quantization error. In the proposed scheme, the Channel State In...For the cooperative multi-cell systems with muki-user MIMO, a new limited feedback bit allocation scheme is proposed to minimize the rate loss caused by quantization error. In the proposed scheme, the Channel State Information (CSI) feedback of cell-edge user for the local service cell and the adjacent interference cell are separately quantized. Based on the upper bound of the rate loss of cell-edge user due to the limited feedback, the number of feedback bits for quantized CSI of the local service cell and the adjacent cell are optimized with the fixed total bits of the limited feedback. The simulation shows that our proposed scheme of feedback bits allocation efficiently decreases the interference and increases the rate of systems compared with that of equal bits allocation and those of other allocations.展开更多
In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load fo...In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.展开更多
Due to the increase in the number of users, beam switching is used for suppressing interference, which leads to higher computational complexity in multi-cell millimeter wave communications. In order to resolve this pr...Due to the increase in the number of users, beam switching is used for suppressing interference, which leads to higher computational complexity in multi-cell millimeter wave communications. In order to resolve this problem, a beam interference model is introduced, and a lower complexity beam interference suppression algorithm based on user grouping is proposed. The proposed algorithm operates beam switching and mnlti-cell cooperative transmission for a part of the users when there exists beam interference due to high user density. In particular, considering the distinct interference suffered by each user, the proposed dual-threshold user grouping method can effectively solve the frequent switching problem at the base station caused by multi-cell cooperative transmission in multi-cell environments. Simulation results show that the proposed algorithm can reduce the computational complexity of beam switching and approach ideal system capacity, compared with conventional interference suppression algorithms that do not involve grouping of users.展开更多
To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematica...To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.展开更多
The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning p...The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning problem for edge nodes has to be investigated to provide prior information for future system configurations.This work focuses on how to quantify the computation capabilities of access points at network edges when provisioning resources of computation and communication in multi-cell wireless networks.The problem is formulated as a discrete and non-convex minimization problem,where practical constraints including delay requirements,the inter-cell interference,and resource allocation strategies are considered.An iterative algorithm is also developed based on decomposition theory and fractional programming to solve this problem.The analysis shows that the necessary computation capability needed for certain delay guarantee depends on resource allocation strategies for delay-critical tasks.For delay-tolerant tasks,it can be approximately estimated by a derived lower bound which ignores the scheduling strategy.The efficiency of the proposed algorithm is demonstrated using numerical results.展开更多
This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to max...This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to maximize the user sup-porting ratio for the uplink multi-cell system by optimizing the transmit power.This paper adopts the user supporting ratio as the main performance metric.Our goal is to improve the user supporting ratio of each cell.Since the formulated optimization problem is non-convex,it cannot be solved by using traditional convex-based optimi-zation methods.Thus,a distributed method with low complexity and a small amount of multi-cell interaction is proposed.Numerical results show that a notable perfor-mance gain achieved by our proposed scheme compared with the traditional one is without inter-cell interaction.展开更多
Reconfigurable intelligent surface(RIS)is a promising solution to deal with the blockage-sensitivity of millimeter wave band and reduce the high energy consumption caused by network densification. However, deploying l...Reconfigurable intelligent surface(RIS)is a promising solution to deal with the blockage-sensitivity of millimeter wave band and reduce the high energy consumption caused by network densification. However, deploying large scale RISs may not bring expected performance gain due to significant channel estimation overhead and non-negligible reflected interference.In this paper,we derive the analytical expressions of the coverage probability, area spectrum efficiency(ASE)and energy efficiency (EE)of a downlink RIS-aided multi-cell network.In order to optimize the network performance, we investigate the conditions for the optimal number of training symbols of each antenna-to-antenna and antenna-to-element path (referred to as the optimal unit training overhead) in channel estimation.Our study shows that:1)RIS deployment is not“the more, the better”, only when blockage objects are dense should one deploy more RISs;2) the coverage probability is maximized when the unit training overhead is designed as large as possible;3)however,the ASE-and-EE-optimal unit training overhead exists. It is a monotonically increasing function of the frame length and a monotonically decreasing function of the average signal-to-noise-ratio (in the high signal-to-noise-ratio region). Additionally,the optimal unit training overhead is smaller when communication nodes deploy particularly few or many antennas.展开更多
Reconfigurable intelligent surface(RIS)is widely accepted as a potential technology to assist in communication between base stations(BSs)and users in edge areas.We study the energy efficiency of a RIS-assisted multi-c...Reconfigurable intelligent surface(RIS)is widely accepted as a potential technology to assist in communication between base stations(BSs)and users in edge areas.We study the energy efficiency of a RIS-assisted multi-cell communication system with a realistic RIS power consumption model.With the goal of maximizing the energy efficiency of the system,we optimize the transmit beamforming vectors at the BS and the RIS phase shift matrix by a proposed alternative optimization algorithm.First,the transmit beamforming vector is optimized by solving the transformed weighted minimum mean square error(WMMSE)problem.Subsequently,to solve the inconvenience incurred by the discrete relationship between the RIS reflecting unit power consumption and its discrete phase shift,we use a continuous function to approximate their relationship.With this approximation,we can use the majorization minimization(MM)technique to optimize the continuous RIS phase shifts,and then quantize the obtained phase shifts to discrete ones.Simulation results demonstrate that the energy efficiency of the system is effectively optimized by the proposed algorithm.展开更多
This research introduced the design,analysis and optimization of bionic shrimp chela multi-cell tubes(BSCMTs)in bending by embedding an arthropod's microstructure inside a thin-walled square structure.A three-poin...This research introduced the design,analysis and optimization of bionic shrimp chela multi-cell tubes(BSCMTs)in bending by embedding an arthropod's microstructure inside a thin-walled square structure.A three-point impact bending finite element model was,in the first instance,correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force,specific energy absorption and mean crushing force.Following a complex proportional assessment(COPRAS)approach and optimization phases,results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.展开更多
In this paper, we propose a coordinated pilot reuse(CPR) approach to reduce the pilot overhead for multi-cell massive multi-input multi-output transmission. Unlike the conventional multi-cell pilot reuse approach in w...In this paper, we propose a coordinated pilot reuse(CPR) approach to reduce the pilot overhead for multi-cell massive multi-input multi-output transmission. Unlike the conventional multi-cell pilot reuse approach in which pilots can only be reused among different cells, the proposed CPR approach allows pilots to be reused among both inter-cell and intra-cell user equipments, and thus, pilot overhead can be efficiently reduced. For spatially correlated Rayleigh fading channels, we first present a CPR-based channel estimation method and a low complexity pilot allocation algorithm. Because CPR might lead to additional pilot interference, we develop a statistically robust uplink receiver and downlink precoder that takes channel estimation errors into account. The proposed uplink receiver and downlink precoder are robust to channel state information inaccuracy, and thus, can guarantee a certain transmission performance. Monte-Carlo simulations illustrate the significant performance improvement in net spectral efficiency offered by the proposed CPR approach.展开更多
Utility based resource allocation strategy in multi-cell orthogonal frequency-division multiplexing (OFDM) system plays a critical role in next generation mobile communication systems. Based on the analysis of risk ...Utility based resource allocation strategy in multi-cell orthogonal frequency-division multiplexing (OFDM) system plays a critical role in next generation mobile communication systems. Based on the analysis of risk aversion utility functions, this article proposed the system utility based utility, which is named the customer satisfaction (CS) utility. Compared with the proportional fairness (PF) utility, the CS utility reflects the user demands better, and enables the system to adjust its resource allocation according to both the traffic requirements and the resource situation.展开更多
In this paper,a distributed interference suppression scheme is proposed for multi-cell uplink orthogonal frequency division multiple access(OFDMA) system.Firstly,we model resource allocation process as a non-coopera...In this paper,a distributed interference suppression scheme is proposed for multi-cell uplink orthogonal frequency division multiple access(OFDMA) system.Firstly,we model resource allocation process as a non-cooperative game.Then we show the concept of Nash equilibrium(NE) and investigate its existence and uniqueness in detail.To enhance the performance of multi-cell OFDMA system,the further improvement process based on NE is given.Several adjustable parameters are set to make the system achieve different tradeoffs between the total capacity and complexity.Simulation results show that the proposed scheme can greatly improve the system performance comparing with conventional scheme.展开更多
In multi-cell cooperative multi-input multi-output (MIMO) systems, base station (BS) can exchange and utilize channel state information (CSI) of adjacent cell users to manage co-channel interference. Users quant...In multi-cell cooperative multi-input multi-output (MIMO) systems, base station (BS) can exchange and utilize channel state information (CSI) of adjacent cell users to manage co-channel interference. Users quantize the CSIs of desired channel and interference channels using finite-rate feedback links, then BS can generate cooperative block diagonalization (BD) precoding matrices using the obtained quantized CSI at transmitter to supress co-channel interference. In this paper, a novel adaptive bit allocation scheme is proposed to minimize the rate loss due to imperfect CSI. We derive the closed-form expression of rate loss caused by both channel delay and limited feedback. Based on the derived rate loss expression, the proposed scheme can adaptively allocate more bits to quantize the better channels with smaller delays and fewer bits to worse channels with larger delays. Simulation results show that the proposed scheme yields higher performance than other allocation schemes.展开更多
文摘Over-the-air computation(AirComp)based federated learning(FL)has been a promising technique for distilling artificial intelligence(AI)at the network edge.However,the performance of AirComp-based FL is decided by the device with the lowest channel gain due to the signal alignment property.More importantly,most existing work focuses on a single-cell scenario,where inter-cell interference is ignored.To overcome these shortages,a reconfigurable intelligent surface(RIS)-assisted AirComp-based FL system is proposed for multi-cell networks,where a RIS is used for enhancing the poor user signal caused by channel fading,especially for the device at the cell edge,and reducing inter-cell interference.The convergence of FL in the proposed system is first analyzed and the optimality gap for FL is derived.To minimize the optimality gap,we formulate a joint uplink and downlink optimization problem.The formulated problem is then divided into two separable nonconvex subproblems.Following the successive convex approximation(SCA)method,we first approximate the nonconvex term to a linear form,and then alternately optimize the beamforming vector and phase-shift matrix for each cell.Simulation results demonstrate the advantages of deploying a RIS in multi-cell networks and our proposed system significantly improves the performance of FL.
文摘In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.
文摘In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topology has allowed the voltage stresses of the converter to be distributed among several switching cells. Secondly, divide the input voltage into several fractions to reduce the number of power semiconductors to be switched. In this contribution, the general topology of this micro-inverter has been described and the simulation tests developed to validate its operation have been presented. Finally, we discussed the simulation results, the efficiency of this topology and the feasibility of its use in a grid-connected photovoltaic production system.
基金Project(200632800003-11) supported by Western Communications Construction Scientific and Technological Project in China
文摘Monitoring the service condition of concrete structures requires the quantitative assessment of properties and corrosion rate of structural steels surrounded by concrete.A multi-cell sensor system that included a reference electrode,a chloride content sensor,a macrocell current unit and an electrical resistance measurement unit was developed.This system provided the following important electrochemical data in the cover-zone concrete on site:open circuit potential,macrocell current from anodes to cathode,chloride profile,concrete resistance and corrosion rate of built-in anodes.The experimental results show that the macrocell current increases when the chloride content in concrete is higher.Thus,monitoring the chloride content is a good method for monitoring the corrosion state.The chloride ion content and cover depth are the key factors that affect the electrical resistance of concrete.Without considering the temperature and time,a simplified model of the instantaneous corrosion rate of steel rebar in a concrete structure based on the measured chloride contents and concrete resistance was proposed.The test results further prove the reliability of this simplified predicting model.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.
基金supported by National Natural Science Foundation of China (NSFC) under Grant No. 60972075
文摘Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the existing efficient radio resource allocation algorithms do not consider. The efficient radio resource allocation algorithm, i.e., Pre-assignment and Reassignment (PR) algorithm, obtains the lowest complexity and achieves good throughput performance in single cell OFDMA system. However, in multi-cell multi-sector OFDMA networks, PR algorithm is not applicable because it does not take ICI into consideration. The proposed PIB algorithm balances the number of loading bits for the desired User Equipment (UE) and the major interfering UE, as well as optimizes the SINR performance; meanwhile, IBLA avoids loading certain number of interfering bits which would make SINR unqualified. Simulations confirm the ICI management effectiveness and feasibility of both the proposals.
文摘A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.
基金Acknowledgements The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped to improve the quality of this paper. This work was supported partiaUy by the National Natural Science Foundation of China under Grant No. 60772110 Fundamental Research Funds for the Central Universities.
文摘For the cooperative multi-cell systems with muki-user MIMO, a new limited feedback bit allocation scheme is proposed to minimize the rate loss caused by quantization error. In the proposed scheme, the Channel State Information (CSI) feedback of cell-edge user for the local service cell and the adjacent interference cell are separately quantized. Based on the upper bound of the rate loss of cell-edge user due to the limited feedback, the number of feedback bits for quantized CSI of the local service cell and the adjacent cell are optimized with the fixed total bits of the limited feedback. The simulation shows that our proposed scheme of feedback bits allocation efficiently decreases the interference and increases the rate of systems compared with that of equal bits allocation and those of other allocations.
基金Projects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProjects(2015zzts210,2016zzts331)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.
基金This work was supported in part by the Program for Changjiang Scholars and Innovative Research Team in University under grant No. IRT16R72the National Natural Science Foundation of China under Grant No. 61440062.
文摘Due to the increase in the number of users, beam switching is used for suppressing interference, which leads to higher computational complexity in multi-cell millimeter wave communications. In order to resolve this problem, a beam interference model is introduced, and a lower complexity beam interference suppression algorithm based on user grouping is proposed. The proposed algorithm operates beam switching and mnlti-cell cooperative transmission for a part of the users when there exists beam interference due to high user density. In particular, considering the distinct interference suffered by each user, the proposed dual-threshold user grouping method can effectively solve the frequent switching problem at the base station caused by multi-cell cooperative transmission in multi-cell environments. Simulation results show that the proposed algorithm can reduce the computational complexity of beam switching and approach ideal system capacity, compared with conventional interference suppression algorithms that do not involve grouping of users.
基金The National Natural Science Foundation of China(No.61571111)the Incubation Project of the National Natural Science Foundation of China at Nanjing University of Posts and Telecommunications(No.NY219106)
文摘To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.
基金Supported by the Shanghai Sailing Program(No.18YF1427900)the National Natural Science Foundation of China(No.61471347)the Shanghai Pujiang Program(No.2020PJD081).
文摘The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning problem for edge nodes has to be investigated to provide prior information for future system configurations.This work focuses on how to quantify the computation capabilities of access points at network edges when provisioning resources of computation and communication in multi-cell wireless networks.The problem is formulated as a discrete and non-convex minimization problem,where practical constraints including delay requirements,the inter-cell interference,and resource allocation strategies are considered.An iterative algorithm is also developed based on decomposition theory and fractional programming to solve this problem.The analysis shows that the necessary computation capability needed for certain delay guarantee depends on resource allocation strategies for delay-critical tasks.For delay-tolerant tasks,it can be approximately estimated by a derived lower bound which ignores the scheduling strategy.The efficiency of the proposed algorithm is demonstrated using numerical results.
文摘This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to maximize the user sup-porting ratio for the uplink multi-cell system by optimizing the transmit power.This paper adopts the user supporting ratio as the main performance metric.Our goal is to improve the user supporting ratio of each cell.Since the formulated optimization problem is non-convex,it cannot be solved by using traditional convex-based optimi-zation methods.Thus,a distributed method with low complexity and a small amount of multi-cell interaction is proposed.Numerical results show that a notable perfor-mance gain achieved by our proposed scheme compared with the traditional one is without inter-cell interaction.
基金supported in part by the National Natural Science Foundation of China under Grants 62341108,62022049,and 62111530197.
文摘Reconfigurable intelligent surface(RIS)is a promising solution to deal with the blockage-sensitivity of millimeter wave band and reduce the high energy consumption caused by network densification. However, deploying large scale RISs may not bring expected performance gain due to significant channel estimation overhead and non-negligible reflected interference.In this paper,we derive the analytical expressions of the coverage probability, area spectrum efficiency(ASE)and energy efficiency (EE)of a downlink RIS-aided multi-cell network.In order to optimize the network performance, we investigate the conditions for the optimal number of training symbols of each antenna-to-antenna and antenna-to-element path (referred to as the optimal unit training overhead) in channel estimation.Our study shows that:1)RIS deployment is not“the more, the better”, only when blockage objects are dense should one deploy more RISs;2) the coverage probability is maximized when the unit training overhead is designed as large as possible;3)however,the ASE-and-EE-optimal unit training overhead exists. It is a monotonically increasing function of the frame length and a monotonically decreasing function of the average signal-to-noise-ratio (in the high signal-to-noise-ratio region). Additionally,the optimal unit training overhead is smaller when communication nodes deploy particularly few or many antennas.
基金Project supported by the National Natural Science Foundation of China(Nos.62231009,61971126)the Natural Science Foundation of Jiangsu Province,China(No.BK20211511)the Jiangsu Province Frontier Leading Technology Basic Research Project,China(No.BK20212002)。
文摘Reconfigurable intelligent surface(RIS)is widely accepted as a potential technology to assist in communication between base stations(BSs)and users in edge areas.We study the energy efficiency of a RIS-assisted multi-cell communication system with a realistic RIS power consumption model.With the goal of maximizing the energy efficiency of the system,we optimize the transmit beamforming vectors at the BS and the RIS phase shift matrix by a proposed alternative optimization algorithm.First,the transmit beamforming vector is optimized by solving the transformed weighted minimum mean square error(WMMSE)problem.Subsequently,to solve the inconvenience incurred by the discrete relationship between the RIS reflecting unit power consumption and its discrete phase shift,we use a continuous function to approximate their relationship.With this approximation,we can use the majorization minimization(MM)technique to optimize the continuous RIS phase shifts,and then quantize the obtained phase shifts to discrete ones.Simulation results demonstrate that the energy efficiency of the system is effectively optimized by the proposed algorithm.
基金supported by the 2022 Guangxi University Young and Middle-aged Teachers’Basic Research Ability Improvement Project(Grant No.2022KY0781)Scientific Research Funds of Guilin University of Aerospace Technology(Grant No.XJ21KT18)the Major Special Projects of Liuzhou Science and Technology Plan(Grant No.2022ABA0106).
文摘This research introduced the design,analysis and optimization of bionic shrimp chela multi-cell tubes(BSCMTs)in bending by embedding an arthropod's microstructure inside a thin-walled square structure.A three-point impact bending finite element model was,in the first instance,correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force,specific energy absorption and mean crushing force.Following a complex proportional assessment(COPRAS)approach and optimization phases,results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.
基金supported by the National Natural Science Foundation of China(Grant Nos.6147111361320106003&61201171)+3 种基金the National Hi-Tech Research and Development Program of China("863"Project)(Grant Nos.2015AA01A701&2014AA01A704)the National Science and Technology Major Project of China(Grant No.2014ZX03003006-003)the Program for Jiangsu Innovation TeamYOU Li was supported in part by the China Scholarship Council(CSC)
文摘In this paper, we propose a coordinated pilot reuse(CPR) approach to reduce the pilot overhead for multi-cell massive multi-input multi-output transmission. Unlike the conventional multi-cell pilot reuse approach in which pilots can only be reused among different cells, the proposed CPR approach allows pilots to be reused among both inter-cell and intra-cell user equipments, and thus, pilot overhead can be efficiently reduced. For spatially correlated Rayleigh fading channels, we first present a CPR-based channel estimation method and a low complexity pilot allocation algorithm. Because CPR might lead to additional pilot interference, we develop a statistically robust uplink receiver and downlink precoder that takes channel estimation errors into account. The proposed uplink receiver and downlink precoder are robust to channel state information inaccuracy, and thus, can guarantee a certain transmission performance. Monte-Carlo simulations illustrate the significant performance improvement in net spectral efficiency offered by the proposed CPR approach.
基金supported by the Beijing Science and Technology Commission project (D08080100620802)the International Scientific and Technological Cooperation Projects in China and Sweden (2008DFA12110)+1 种基金the National Science and Technology Special Project (2009ZX03003-011)the National Natural Science Foundation of China (60872048)
文摘Utility based resource allocation strategy in multi-cell orthogonal frequency-division multiplexing (OFDM) system plays a critical role in next generation mobile communication systems. Based on the analysis of risk aversion utility functions, this article proposed the system utility based utility, which is named the customer satisfaction (CS) utility. Compared with the proportional fairness (PF) utility, the CS utility reflects the user demands better, and enables the system to adjust its resource allocation according to both the traffic requirements and the resource situation.
基金supported by the Sino-Swedish IMT-Advanced Cooperation Project (2008DFA11780)the Canada-China Scientific and Technological Cooperation (2010DFA11320)+2 种基金the National Natural Science Foundation of China (60802033, 60873190)the Hi-Tech Research and Development Program of China (2008AA01Z211)the Fundamental Research Funds for the Central Universities (2009RC0308)
文摘In this paper,a distributed interference suppression scheme is proposed for multi-cell uplink orthogonal frequency division multiple access(OFDMA) system.Firstly,we model resource allocation process as a non-cooperative game.Then we show the concept of Nash equilibrium(NE) and investigate its existence and uniqueness in detail.To enhance the performance of multi-cell OFDMA system,the further improvement process based on NE is given.Several adjustable parameters are set to make the system achieve different tradeoffs between the total capacity and complexity.Simulation results show that the proposed scheme can greatly improve the system performance comparing with conventional scheme.
基金supported by the Important National Science & Technology Specific Projects(2010ZX03005-001-0)the Hi-Tech Research and Development of China(2006AA01Z272)the New Century Excellent Talents in University(NCET):(NCET-11-0593)
文摘In multi-cell cooperative multi-input multi-output (MIMO) systems, base station (BS) can exchange and utilize channel state information (CSI) of adjacent cell users to manage co-channel interference. Users quantize the CSIs of desired channel and interference channels using finite-rate feedback links, then BS can generate cooperative block diagonalization (BD) precoding matrices using the obtained quantized CSI at transmitter to supress co-channel interference. In this paper, a novel adaptive bit allocation scheme is proposed to minimize the rate loss due to imperfect CSI. We derive the closed-form expression of rate loss caused by both channel delay and limited feedback. Based on the derived rate loss expression, the proposed scheme can adaptively allocate more bits to quantize the better channels with smaller delays and fewer bits to worse channels with larger delays. Simulation results show that the proposed scheme yields higher performance than other allocation schemes.