期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
1
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence multi-layer perceptron(mlp) Discrete element method FEM-DEM Machine learning
下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:11
2
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock Harris hawks optimization(HHO) multi-layer perceptron(mlp) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
下载PDF
Prediction of Logistics Demand via Least Square Method and Multi-Layer Perceptron 被引量:1
3
作者 WEI Leqin ZHANG Anguo 《Journal of Donghua University(English Edition)》 EI CAS 2020年第6期526-533,共8页
To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ... To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy. 展开更多
关键词 logistics demand least square method(LSM) multi-layer perceptron(mlp) PREDICTION strategic planning
下载PDF
Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Perceptron Learning Strategies 被引量:1
4
作者 Patrice Wira Thien Minh Nguyen 《Journal of Electrical Engineering》 2017年第5期219-230,共12页
This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are... This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are proposed and trained with signal sets that arc generated from real harmonic waveforms. After training, each trained MLP is able to identify the two coefficients of each harmonic term of the input signal. The effectiveness of the new approach is evaluated by two experiments and is also compared to another recent MLP method. Experimental results show that the proposed MLPs approach enables to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. The new approach can be applied in harmonic compensation strategies with an active power filter to ensure power quality issues in electrical power systems. 展开更多
关键词 Power quality harmonic identification mlp multi-layer perceptron) Fourier series active power filtering.
下载PDF
基于MLP和多头自注意力特征融合的双模态情感计算模型
5
作者 吴俊洁 王佳阳 +1 位作者 朱萍 肖强 《计算机应用》 CSCD 北大核心 2024年第S01期39-43,共5页
针对情感计算中传统的单模态情感分析通常存在分类准确率不高和不同语言环境间泛化能力较差的问题,提出一种双模态情感计算模型,以同时使用包含中英文两种语言、两种不同模态的情感数据。首先,利用多层感知机(MLP)网络和双向长短时记忆(... 针对情感计算中传统的单模态情感分析通常存在分类准确率不高和不同语言环境间泛化能力较差的问题,提出一种双模态情感计算模型,以同时使用包含中英文两种语言、两种不同模态的情感数据。首先,利用多层感知机(MLP)网络和双向长短时记忆(BiLSTM)网络对数据进行特征提取;其次,基于MLP和自注意力机制分别对提取的特征进行特征融合,得到多模态分析模型;最后,使用该模型在构建的包含中英文两种语言数据的数据集上进行二分类情感计算预测。实验结果表明,所提模型相较于次优的BiLSTM模型,精度提高了1.22%;相较于单模态情感计算模型,精度提高了6.21%~14.00%。 展开更多
关键词 情感计算 多语言泛化 多层感知机 自注意力机制 双模态
下载PDF
基于JSM和MLP改进发音错误检测的方法 被引量:1
6
作者 袁桦 史永哲 +1 位作者 赵军红 刘加 《自动化学报》 EI CSCD 北大核心 2014年第12期2815-2823,共9页
针对发音错误检测的发音字典生成提出基于联合序列多阶模型(Joint-sequence multi-gram,JSM)和多层神经感知(Multi-layer perception,MLP)的方法.首先使用JSM模型对发音错误进行建模,将标准发音和错误发音组合为发音对,表示它们之间的... 针对发音错误检测的发音字典生成提出基于联合序列多阶模型(Joint-sequence multi-gram,JSM)和多层神经感知(Multi-layer perception,MLP)的方法.首先使用JSM模型对发音错误进行建模,将标准发音和错误发音组合为发音对,表示它们之间的对应关系,再使用N元文法来统计各发音对之间的关系,描述错误发音对上下文关系的依赖.最后使用MLP对发音对之间的关系进行重新建模,以学习到在相似的上下文条件下发生的相似的错误.实验证明使用MLP对高阶模型进行概率重估能有效的平滑概率空间,提高了发音错误检测的性能. 展开更多
关键词 发音错误检测 联合序列多阶模型 多层神经感知 计算机辅助语言学习
下载PDF
MLP training in a self-organizing state space model using unscented Kalman particle filter 被引量:3
7
作者 Yanhui Xi Hui Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期141-146,共6页
Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF... Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods. 展开更多
关键词 multi-layer perceptron (mlp Bayesian method self-organizing state space (SOSS) unscented Kalman particle filter(UPF).
下载PDF
融合全局推理和MLP架构的甲状腺结节分割模型
8
作者 李彬榕 谢珺 +2 位作者 李钢 续欣莹 蓝子俊 《模式识别与人工智能》 EI CSCD 北大核心 2022年第7期649-660,共12页
针对甲状腺结节分割中存在的超声图像噪声干扰较大、结节尺寸多变和现有模型计算复杂度较高的问题,文中构建融合全局推理和多层感知机(Multi-layer Perception,MLP)架构的甲状腺结节分割模型.模型以轴向移位MLP模块为基础架构,以更小的... 针对甲状腺结节分割中存在的超声图像噪声干扰较大、结节尺寸多变和现有模型计算复杂度较高的问题,文中构建融合全局推理和多层感知机(Multi-layer Perception,MLP)架构的甲状腺结节分割模型.模型以轴向移位MLP模块为基础架构,以更小的计算复杂度实现不同空间位置特征之间的交互.在编码部分,融合端到端的全局推理单元,基于图卷积对图像全局信息进行交互,缓解图像噪声干扰较大的影响.在解码部分,引入金字塔特征层,完成多尺度特征交互,应对结节尺寸多变的问题.在DDIT数据集上的实验表明,文中模型性能较优,此外,文中模型还适用于乳腺结节分割、视网膜血管分割等其它医学图像分割任务. 展开更多
关键词 医学图像分割 全局推理 多层感知机(mlp)架构 金字塔特征 甲状腺结节
下载PDF
航空发动机滑油消耗率计算与预测方法
9
作者 张振生 蔡景 +1 位作者 张瑞 张航源 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第4期668-676,共9页
针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBS... 针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。 展开更多
关键词 航空发动机 滑油消耗率 基于密度聚类算法 多层感知器
下载PDF
A hybrid constriction coefficientbased particle swarm optimization and gravitational search algorithm for training multi-layer perceptron 被引量:2
10
作者 Sajad Ahmad Rather P.Shanthi Bala 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第2期129-165,共37页
Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcom... Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup. 展开更多
关键词 Neural network Feedforward neural network(FNN) Gravitational search algorithm(GSA) Particle swarm optimization(PSO) HYBRIDIZATION CPSOGSA multi-layer perceptron(mlp)
原文传递
Camera-Radar Fusion Sensing System Based on Multi-Layer Perceptron 被引量:1
11
作者 YAO Tong WANG Chunxiang QIAN Yeqiang 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期561-568,共8页
Environmental perception is a key technology for autonomous driving.Owing to the limitations of a single sensor,multiple sensors are often used in practical applications.However,multi-sensor fusion faces some problems... Environmental perception is a key technology for autonomous driving.Owing to the limitations of a single sensor,multiple sensors are often used in practical applications.However,multi-sensor fusion faces some problems,such as the choice of sensors and fusion methods.To solve these issues,we proposed a machine learning-based fusion sensing system that uses a camera and radar,and that can be used in intelligent vehicles.First,the object detection algorithm is used to detect the image obtained by the camera;in sequence,the radar data is preprocessed,coordinate transformation is performed,and a multi-layer perceptron model for correlating the camera detection results with the radar data is proposed.The proposed fusion sensing system was verified by comparative experiments in a real-world environment.The experimental results show that the system can effectively integrate camera and radar data results,and obtain accurate and comprehensive object information in front of intelligent vehicles. 展开更多
关键词 intelligent vehicle environmental perception system sensor fusion multi-layer perceptron
原文传递
Prediction of diabetes and hypertension using multi-layer perceptron neural networks 被引量:1
12
作者 Hani Bani-Salameh Shadi MAlkhatib +4 位作者 Moawyiah Abdalla Mo’taz Al-Hami Ruaa Banat Hala Zyod Ahed J Alkhatib 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第2期120-137,共18页
Background:Diabetes and hypertension are two of the commonest diseases in the world.As they unfavorably affect people of different age groups,they have become a cause of concern and must be predicted and diagnosed wel... Background:Diabetes and hypertension are two of the commonest diseases in the world.As they unfavorably affect people of different age groups,they have become a cause of concern and must be predicted and diagnosed well in advance.Objective:This research aims to determine the effectiveness of artificial neural networks(ANNs)in predicting diabetes and blood pressure diseases and to point out the factors which have a high impact on these diseases.Sample:This work used two online datasets which consist of data collected from 768 individuals.We applied neural network algorithms to predict if the individuals have those two diseases based on some factors.Diabetes prediction is based on five factors:age,weight,fat-ratio,glucose,and insulin,while blood pressure prediction is based on six factors:age,weight,fat-ratio,blood pressure,alcohol,and smoking.Method:A model based on the Multi-Layer Perceptron Neural Network(MLP)was implemented.The inputs of the network were the factors for each disease,while the output was the prediction of the disease’s occurrence.The model performance was compared with other classifiers such as Support Vector Machine(SVM)and K-Nearest Neighbors(KNN).We used performance metrics measures to assess the accuracy and performance of MLP.Also,a tool was implemented to help diagnose the diseases and to understand the results.Result:The model predicted the two diseases with correct classification rate(CCR)of 77.6%for diabetes and 68.7%for hypertension.The results indicate that MLP correctly predicts the probability of being diseased or not,and the performance can be significantly increased compared with both SVM and KNN.This shows MLPs effectiveness in early disease prediction. 展开更多
关键词 Artificial Neural Network(ANN) multi-layer perceptron(mlp) SVM KNN decision-making prediction tools DIABETES blood pressure HYPERTENSION software tools
原文传递
三维激光扫描曲面重构算法研究 被引量:8
13
作者 杨贵军 柳钦火 武文波 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第11期1181-1183,1194,共4页
围绕三维激光扫描曲面重构做了以下工作:(1)分析了三维激光扫描仪的工作原理;(2)研究了利用多层感知器神经网络用于曲面重构,提出了基于多层感知器网络的曲面重构算法(M LPSR)。为了有效评估算法的性能,通过CYRAX 2500实测数据并利用M A... 围绕三维激光扫描曲面重构做了以下工作:(1)分析了三维激光扫描仪的工作原理;(2)研究了利用多层感知器神经网络用于曲面重构,提出了基于多层感知器网络的曲面重构算法(M LPSR)。为了有效评估算法的性能,通过CYRAX 2500实测数据并利用M ATLAB环境进行仿真实验,结果表明:这种算法具有较高的重构精度和较快的重构速度,尤其在曲面受到破坏或不完全时特别有效,是值得推广的曲面重构算法。 展开更多
关键词 三维激光扫描 曲面重构 多层感知器
下载PDF
基于前馈多层感知器的网络入侵检测的多数据包分析 被引量:5
14
作者 周炎涛 郭如冰 +1 位作者 李肯立 吴正国 《计算机应用》 CSCD 北大核心 2006年第4期806-808,共3页
提出了一种新型网络入侵检测模型,在该模型中,首先将截获的数据包结合历史数据包数据库进行协议分析,找出可能存在的入侵行为的相关数据包,然后采用前馈多层感知器神经网络对这些相关的数据包进行回归分析,最终获得检测结果。该模型与... 提出了一种新型网络入侵检测模型,在该模型中,首先将截获的数据包结合历史数据包数据库进行协议分析,找出可能存在的入侵行为的相关数据包,然后采用前馈多层感知器神经网络对这些相关的数据包进行回归分析,最终获得检测结果。该模型与传统采用单数据包检测方式的网络入侵检测系统(NIDS)模型相比,具有更低的漏检率。 展开更多
关键词 网络入侵检测系统 数据挖掘 前馈多层感知器 协议分析
下载PDF
基于互信息最小的非线性混合胎儿心电信号提取方法 被引量:8
15
作者 任东晓 叶茂 +1 位作者 殷英 朱远翔 《电子测量与仪器学报》 CSCD 2010年第7期680-685,共6页
胎儿心电信号提取具有重要的临床意义。目前大多数胎儿心电信号提取方法是基于线性瞬时混合模型,使用多路信号实现.本文基于更符合实际情况的非线性混合模型,使用两路心电信号,提出一种新颖的从母体腹部混合信号中提取胎儿心电信号方法... 胎儿心电信号提取具有重要的临床意义。目前大多数胎儿心电信号提取方法是基于线性瞬时混合模型,使用多路信号实现.本文基于更符合实际情况的非线性混合模型,使用两路心电信号,提出一种新颖的从母体腹部混合信号中提取胎儿心电信号方法。首先,在假定母体和胎儿两个心电信号相互独立的基础上,基于互信息最小原则,提出一种新的目标函数;然后,利用多层感知机拟合母体心电信号传导至腹部所经历的非线性变换,从而得到母体腹部混合信号中母体心电成分的最优估计;最后,从母体腹部混合信号中减去母体心电信号的最优估计,实现胎儿心电信号的成功提取。实验结果验证了该方法的正确性和有效性。 展开更多
关键词 盲信号分离 互信息 多层感知机 胎儿心电信号
下载PDF
基于AR自相关峰态值的一类轴承故障检测方法 被引量:4
16
作者 陶新民 杜宝祥 +1 位作者 徐勇 吴志军 《振动与冲击》 EI CSCD 北大核心 2008年第2期120-124,136,共6页
针对轴承故障检测系统中异常样本数据不易收集以及异常样本数据分布不均导致传统分类算法出现过适应现象等现实应用问题,提出了一种基于自回归(AR)模型自相关系数峰态特征的一类故障检测方法。该方法利用正常样本生成AR模型参数,其他样... 针对轴承故障检测系统中异常样本数据不易收集以及异常样本数据分布不均导致传统分类算法出现过适应现象等现实应用问题,提出了一种基于自回归(AR)模型自相关系数峰态特征的一类故障检测方法。该方法利用正常样本生成AR模型参数,其他样本在该模型的投影形成残差序列,计算残差序列的自相关系数并取其峰态特征作为相似性的度量。实验结果表明该方法能有效地克服以AR模型参数为特征计算复杂度高且检测性能易受样本大小影响的不足。同时,文章给出了单一故障诊断模型并提出基于粒子群优化算法的阈值设定决策方法。实验中将本方法同其他以AR模型为特征的多层感知机(MLP)及自组织映射(SOM)方法进行比较,实验结果验证了本文建议方法的正确性和有效性。 展开更多
关键词 故障检测 AR模型 自相关系数 峰态特征 粒子群算法 多层感知机
下载PDF
可变神经网络结构下的遥感影像光谱分解方法 被引量:2
17
作者 李熙 石长民 +2 位作者 李畅 陈锋锐 田礼乔 《计算机工程》 CAS CSCD 2012年第9期1-3,共3页
多层感知神经网络(MLP)是主流的非线性分解方法,但是目前缺乏有效方法处理MLP分解结果中的丰度负值问题。为此,提出一种可变神经网络结构的方法,逐步去除负值丰度对应的端元,并调整相应的网络结构使之针对剩余的端元进行分解。通过武汉... 多层感知神经网络(MLP)是主流的非线性分解方法,但是目前缺乏有效方法处理MLP分解结果中的丰度负值问题。为此,提出一种可变神经网络结构的方法,逐步去除负值丰度对应的端元,并调整相应的网络结构使之针对剩余的端元进行分解。通过武汉地区模拟TM遥感影像实验可以发现,该方法与传统MLP方法以及线性光谱分解方法的平均误差分别为0.077 7、0.081 9、0.094 3,说明该方法的分解精度高于其他2种分解方法,能克服丰度负值问题。 展开更多
关键词 遥感 混合像元 神经网络 多层感知网络 非负约束 非线性光谱分解模型
下载PDF
基于KPCA空间相似度的一类入侵检测方法 被引量:2
18
作者 徐晶 陶新民 《计算机应用》 CSCD 北大核心 2009年第9期2459-2463,共5页
为了解决入侵检测系统中异常样本数据不易收集以及异常样本数据分布不均导致传统分类算法出现过适应现象等现实应用问题,提出了一种基于核主成分分析(KPCA)空间相似度的一类入侵检测方法。该方法利用KPCA形成正常样本的非线性特征子空间... 为了解决入侵检测系统中异常样本数据不易收集以及异常样本数据分布不均导致传统分类算法出现过适应现象等现实应用问题,提出了一种基于核主成分分析(KPCA)空间相似度的一类入侵检测方法。该方法利用KPCA形成正常样本的非线性特征子空间,其他样本在该空间的投影系数作为相似性的度量。同时,为了有效利用已有的异常训练样本,通过自适应增加免疫因子方法来提高模型的决策性能及增量学习能力。对核函数参数和阈值设定进行了分析,并给出基于粒子群优化算法的决策模型。实验中将该方法同其他多层感知机(MLP),支持向量机(SVM)及自组织映射(SOM)方法进行比较,实验结果验证了该方法的正确性和有效性。 展开更多
关键词 入侵检测 主成分分析 免疫算法 粒子群算法 核参数 多层感知机 自组织映射
下载PDF
基于CHMT/NN的小波域纹理图象分割新算法
19
作者 李会方 徐瑞萍 庞文俊 《弹箭与制导学报》 CSCD 北大核心 2005年第SC期729-732,共4页
文中提出了一种基于隐Markov模型和多层感知器的小波域图象纹理分割新算法。首先该算法通过图形组合方法有效地提取了图像在小波变换域各子带之间的相关性,然后应用多层感知器进行分类,将HMM的规范性和MLP神经网络的分类能力有效地结合... 文中提出了一种基于隐Markov模型和多层感知器的小波域图象纹理分割新算法。首先该算法通过图形组合方法有效地提取了图像在小波变换域各子带之间的相关性,然后应用多层感知器进行分类,将HMM的规范性和MLP神经网络的分类能力有效地结合起来。最后给出了文中算法对Brodatz纹理的分类结果。实验证明了文中算法的有效性。 展开更多
关键词 图象分割 小波 MARKOV 模型 多层感知器
下载PDF
面向复杂场景图像的文本定位新方法 被引量:3
20
作者 傅光辉 黄剑华 +2 位作者 唐降龙 刘家锋 吴锐 《微计算机信息》 北大核心 2008年第18期183-185,共3页
针对复杂场景文本,提出了通过投影产生候选文本块的新算法和针对该算法的候选文本块分析方法。首先根据MLP网络的输出确定图像每个像素点是文本像素点还是非文本像素点,得到候选二值图像。然后根据候选二值图像使用投影法生成候选文本块... 针对复杂场景文本,提出了通过投影产生候选文本块的新算法和针对该算法的候选文本块分析方法。首先根据MLP网络的输出确定图像每个像素点是文本像素点还是非文本像素点,得到候选二值图像。然后根据候选二值图像使用投影法生成候选文本块,针对该投影法,本文提出了频率分析法剔除非文本块,有效的提高了定位准确率。实验表明,本文的方法实现简单,而且可以得到较好的文本定位效果。 展开更多
关键词 mlp网络 多层感知器 投影 区域分析
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部