This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix ...This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By ...The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.展开更多
With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing th...With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.展开更多
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new...In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.展开更多
This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretiz...This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretized co-positive Lyapunov functions, some stability conditions of switched positive linear systems with all modes unstable are derived in both the continuous-time and the discrete-time cases, respectively. The copositive Lyapunov functions constructed in this paper are timevarying during the dwell time and time-invariant afterwards. In addition, the above approach is extended to the switched interval positive systems. A numerical example is proposed to illustrate our approach.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov fu...An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.展开更多
The robust stability of uncertain neutral systems with mixed time-varying delays is investigated in this paper. The uncertainties under consideration are norm-bounded and time-varying. Based on the Lyapunov stability ...The robust stability of uncertain neutral systems with mixed time-varying delays is investigated in this paper. The uncertainties under consideration are norm-bounded and time-varying. Based on the Lyapunov stability theory, a delay-dependent stability criterion is derived and given in the form of a linear matrix inequality (LMI). Finally, a numerical example is given to illustrate significant improvement over some existing results.展开更多
Two easily verified delay-dependent criteria of mean-square exponential robust stability are obtained by constructing Lyapunov-Krasovskii functional and employing the decomposition technique of the continuous matrix-d...Two easily verified delay-dependent criteria of mean-square exponential robust stability are obtained by constructing Lyapunov-Krasovskii functional and employing the decomposition technique of the continuous matrix-discovered set of grey matrix and Ito formula.A numerical example shows the validity and practicality of the criteria presented in this paper.展开更多
This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust s...This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust stabilization of such systems are given in the form of linear matrix inequali- ties.The controller design does not have to require that the time-derivative of time-varying input delay be smaller than one. A numeric example is given to show that the proposed results are effective and less conservative.展开更多
Sufficient conditions for the quadratic D-stability and further robust D-stability of interval systems are presented in this paper. This robust D-stability condition is based on a parameter-dependent Lyapunov function...Sufficient conditions for the quadratic D-stability and further robust D-stability of interval systems are presented in this paper. This robust D-stability condition is based on a parameter-dependent Lyapunov function obtained from the feasibility of a set of linear matrix inequalities (LMIs) defined at a series of partial-vertex-based interval matrices other than the total vertex matrices as in previous results. The results contain the usual quadratic and robust stability of continuous-time and discrete-time interval systems as particular cases. The illustrative example shows that this method is effective and less conservative for checking the quadratic and robust D-stability of interval systems.展开更多
Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix...Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results.展开更多
The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feed...The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feedback is derived, by constructed Lyapunov functional, delay-independent stability criteria are proposed that are sufficient to ensure a uniform asymptotic stability property. Finally, two concise examples are provided to illustrate the feasibility of our results.展开更多
The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way...The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.展开更多
基金This work was supported in part by the Doctor Subject Foundation of China (No. 20050533015)the National Science Foundation of China(No. 60425310,60574014).
文摘This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
基金supported by the National Natural Science Foundation of China(6090402060835001)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010C)
文摘The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.
基金Supported by the National Natural Science Foundation of China(No.61572254,61301103)
文摘With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.
基金Natural Science Foundation of Henan Education Department (No.2007120005).
文摘In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China (61703288,61603079,61873174)
文摘This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretized co-positive Lyapunov functions, some stability conditions of switched positive linear systems with all modes unstable are derived in both the continuous-time and the discrete-time cases, respectively. The copositive Lyapunov functions constructed in this paper are timevarying during the dwell time and time-invariant afterwards. In addition, the above approach is extended to the switched interval positive systems. A numerical example is proposed to illustrate our approach.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
文摘An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.
文摘The robust stability of uncertain neutral systems with mixed time-varying delays is investigated in this paper. The uncertainties under consideration are norm-bounded and time-varying. Based on the Lyapunov stability theory, a delay-dependent stability criterion is derived and given in the form of a linear matrix inequality (LMI). Finally, a numerical example is given to illustrate significant improvement over some existing results.
基金Supported by the Natural Science Foundation of Henan Province(061105440) Supported by the Natural Science Foundation of the Education Department of Henan Province(2008A1100150)
文摘Two easily verified delay-dependent criteria of mean-square exponential robust stability are obtained by constructing Lyapunov-Krasovskii functional and employing the decomposition technique of the continuous matrix-discovered set of grey matrix and Ito formula.A numerical example shows the validity and practicality of the criteria presented in this paper.
基金Supported by National Basic Research Program of China(973 Program)(2002CB312200)National Natural Science Foundation of China(60474045)
文摘This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust stabilization of such systems are given in the form of linear matrix inequali- ties.The controller design does not have to require that the time-derivative of time-varying input delay be smaller than one. A numeric example is given to show that the proposed results are effective and less conservative.
基金This work was supported by the National Natural Science Foundation of China(No.60421002).
文摘Sufficient conditions for the quadratic D-stability and further robust D-stability of interval systems are presented in this paper. This robust D-stability condition is based on a parameter-dependent Lyapunov function obtained from the feasibility of a set of linear matrix inequalities (LMIs) defined at a series of partial-vertex-based interval matrices other than the total vertex matrices as in previous results. The results contain the usual quadratic and robust stability of continuous-time and discrete-time interval systems as particular cases. The illustrative example shows that this method is effective and less conservative for checking the quadratic and robust D-stability of interval systems.
基金Supported by the National Natural Science Foundation of China (6067402760875039)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20050446001)Scientific Research Foundation of Qufu Normal University
文摘Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results.
基金Supported by the Foundation of the National Key Development Plan on Foundational Study(G1998030417) Supported by the Shaanxi Provincial Department of Education(06JK149)
文摘The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feedback is derived, by constructed Lyapunov functional, delay-independent stability criteria are proposed that are sufficient to ensure a uniform asymptotic stability property. Finally, two concise examples are provided to illustrate the feasibility of our results.
基金Supported by the National Natural Science Foundation of P.R.China (60274017, 60572070, 60325311) the Natural Science Foundation of Liaoning Province (20022030)
文摘The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.