This paper consolidates the activity of design and fabrication of 2.9 - 4.32 GHz, 4.3 - 6.42 GHz, and 6.4 - 8.4 GHz filter bank. Novel compact microstrip bandpass filters with stub-loaded multi-mode resonators are pro...This paper consolidates the activity of design and fabrication of 2.9 - 4.32 GHz, 4.3 - 6.42 GHz, and 6.4 - 8.4 GHz filter bank. Novel compact microstrip bandpass filters with stub-loaded multi-mode resonators are proposed. Simulated results indicate that all the filters exhibit insertion losses less than 1.5 dB with passband ripples of 1 dB and sharp attenuations of above 40 dB in their stopbands. The maximums of input and output VSWRs are 1.742 and 1.734, respectively. Due to fabrication error, the initial measured passbands show frequency shifts and insertion losses in upper passbands deteriorate seriously. After tuning of the filter bank, measured results imply that the input and output VSWRs are found lower than 2.135 and 2.187, and the insertion loss in 1 dB bandwidth is less than 2.52 dB. Filter bank has a sharp skirt and out-of-band rejection levels approaching to 40 dB in all desired stopbands except at the frequencies near 2f0.展开更多
This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realizatio...This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realization of a quasi-planar DP antenna.It combines the dual advantages of the conventional microstrip patch(MP)antenna and dielectric resonator(DR)antenna in terms of profile,gain,bandwidth,radiation efficiency,and design freedom.Furthermore,the DP antenna inherits the multi-mode characteristic of the DR antenna,thus it has a large number of high-order modes,including TMmn mode and TEmn mode.The high-order modes are widely applied,for example,by combining with the dominant TM10 mode to expand the bandwidth,or selecting multiple higher-order modes to implement a high-gain antenna.Additionally,the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design.In this paper,the design theories and techniques of DP antenna are introduced and investigated,including calculation and control methods of the resonant mode frequencies,analysis of the radiation mechanism,and applications of the multi-mode characteristic.This overview could provide guidance for the subsequent antenna design,thus effectively avoid time-consuming optimization.展开更多
We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz...We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions,which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain.Furthermore,the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle.Our results might be beneficial for the applications of magnetic thin films in microwave devices.展开更多
Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.Howeve...Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.展开更多
Composite cylindrical shells,as key components,are widely employed in large rotating machines.However,due to the frequency bifurcations and dense frequency spectra caused by rotation,the nonlinear vibration usually ha...Composite cylindrical shells,as key components,are widely employed in large rotating machines.However,due to the frequency bifurcations and dense frequency spectra caused by rotation,the nonlinear vibration usually has the behavior of complex multiple internal resonances.In addition,the varying temperature fields make the responses of the system further difficult to obtain.Therefore,the multiple internal resonances of composite cylindrical shells with porosities induced by rotation with varying temperature fields are studied in this paper.Three different types of the temperature fields,the Coriolis forces,and the centrifugal force are considered here.The Hamilton principle and the modified Donnell nonlinear shell theory are used to obtain the equilibrium equations of the system,which are transformed into the ordinary differential equations(ODEs)by the multi-mode Galerkin technique.Thereafter,the pseudo-arclength continuation method,which can identify the regions of instability,is introduced to obtain the numerical results.The detailed parametric analysis of the rotating composite shells is performed.Multiple internal resonances caused by the interaction between backward and forward wave modes and the energy transfer phenomenon are detected.Besides,the nonlinear amplitude-frequency response curves are different under different temperature fields.展开更多
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclea...Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease. Forty-eight Parkinson’s disease patients and 39 matched healthy controls underwent genotyping and 7 T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson’s disease diagnosis. We found that, in Parkinson’s disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein(SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson’s disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson’s disease.展开更多
The multi-mode approximation is presented to compute the interior wave function of Schr¨odinger equation.This idea is necessary to handle the multi-barrier and high dimensional resonant tunneling problems where m...The multi-mode approximation is presented to compute the interior wave function of Schr¨odinger equation.This idea is necessary to handle the multi-barrier and high dimensional resonant tunneling problems where multiple eigenvalues are considered.The accuracy and efficiency of this algorithm is demonstrated via several numerical examples.展开更多
利用一种新型多模谐振器设计了三通带滤波器。新提出的多模谐振器采用四模谐振器加载两个开路枝节构成,能够产生六个传输极点。该滤波器经过仿真设计后进行实物加工,测试得到各通带的中心频率分别为2.55,3.83,6.00 GHz,相对应的插入损...利用一种新型多模谐振器设计了三通带滤波器。新提出的多模谐振器采用四模谐振器加载两个开路枝节构成,能够产生六个传输极点。该滤波器经过仿真设计后进行实物加工,测试得到各通带的中心频率分别为2.55,3.83,6.00 GHz,相对应的插入损耗分别为0.9,0.7,2.3 d B,与仿真结果吻合良好。该滤波器具有回波损耗小、尺寸小的优点,可应用到现代无线和移动通信中。展开更多
A novel, compact, and highly selective ultra-wideband (UWB) bandpass filter with a narrow notched band is presented. Apart from having a basic structure of a slotline multiple-mode resonator (MMR) and microstrip f...A novel, compact, and highly selective ultra-wideband (UWB) bandpass filter with a narrow notched band is presented. Apart from having a basic structure of a slotline multiple-mode resonator (MMR) and microstrip feed lines, this novel design introduces a cross-coupling between the input and output feed lines to enhance the filter selectivity. The design strictly follows the theory and verified by electromagnetic (EM) simulation and experiments. In addition, the narrow notched band is introduced by embedding a pair of split ring resonators (SRR) in order to reject any undesired existing radio signals that may interfere with the Federal Communications Commission (FCC)-defined UWB band. By changing the structural parameters of SRR, it can be easily tuned to any desired frequency. This filter can be integrated in UWB communication systems and efficiently improve the interference immunity from undesired signals such as wireless local area network (WLAN).展开更多
This paper presents a new Ultra-WideBand (UWB) BandPass Filter (BPF) using half-wavelength Stepped-Impedance Stub-Loaded Resonator (SISLR). Analytical equations derived by the even-odd mode analysis show the new filte...This paper presents a new Ultra-WideBand (UWB) BandPass Filter (BPF) using half-wavelength Stepped-Impedance Stub-Loaded Resonator (SISLR). Analytical equations derived by the even-odd mode analysis show the new filter has two tunable transmission zeros at both sides of the passband to provide a sharp rejection and seven transmission poles inside the passband to achieve U.S. UWB performance. For verification, a UWB BPF is designed, fabricated and measured. The measured results show that the fabricated filter has a -3 dB fractional bandwidth from 3.0 GHz to 10.9 GHz and its insertion loss less than 0.9 dB over the whole passband. Furthermore, the new filter exhibits a simple topology, sharp rejection, and deep stopband suppression.展开更多
We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation pri...We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.展开更多
Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD), and 75%-80% of aMCI patients finally develop AD. So, early identification of patients with aMCI or AD is of great signif...Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD), and 75%-80% of aMCI patients finally develop AD. So, early identification of patients with aMCI or AD is of great significance for prevention and intervention. According to cross-sectional studies, it is known that the hippocampus, posterior cingulate cortex, and corpus callosum are key areas in studies based on structural MRI (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) respectively. Recently, longitudinal studies using each MRI modality have demonstrated that the neuroimaging abnormalities generally involve the posterior brain regions at the very beginning and then gradually affect the anterior areas during the progression of aMCI to AD. However, it is not known whether follow-up studies based on multi-modal neuroimaging techniques (e.g., sMRI, fMRI, and DTI) can help build effective MRI models that can be directly applied to the screening and diagnosis of aMCI and AD. Thus, in the future, large-scale multi-center follow-up studies are urgently needed, not only to build an MRI diagnostic model that can be used on a single person, but also to evaluate the variability and stability of the model in the general population. In this review, we present longitudinal studies using each MRI modality separately, and then discuss the future directions in this field.展开更多
Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer's disease(AD). As a part of the medial temporal lobe memory sy...Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer's disease(AD). As a part of the medial temporal lobe memory system,the hippocampus is one of the brain regions affected earliest by AD neuropathology,and shows progressive degeneration as a MCI progresses to AD. Currently,no validated biomarkers can precisely predict the conversion from a MCI to AD. Therefore,there is a great need of sensitive tools for the early detection of AD progression. In this review,we summarize the specifi c structural and functional changes in the hippocampus from recent a MCI studies using neurophysiological and neuroimaging data. We suggest that a combination of advanced multi-modal neuroimaging measures in discovering biomarkers will provide more precise and sensitive measures of hippocampal changes than using only one of them. These will potentially affect early diagnosis and disease-modifying treatments. We propose a new sequential and progressive framework in which the impairment spreads from the integrity of fibers to volume and then to function in hippocampal subregions. Meanwhile,this is likely to be accompanied by progressive impairment of behavioral and neuropsychological performance in the progression of a MCI to AD.展开更多
Neurophysiological signals are crucial intermediaries,through which brain activity can be quantitatively measured and brain mechanisms are able to be revealed.In particular,non-invasive neurophysiological signals,such...Neurophysiological signals are crucial intermediaries,through which brain activity can be quantitatively measured and brain mechanisms are able to be revealed.In particular,non-invasive neurophysiological signals,such as electroencephalogram(EEG)and functional magnetic resonance imaging(f MRI),are welcomed and frequently utilised in various studies since these signals can be non-invasively recorded without harming the human brain while they convey abundant information pertaining to brain activity.The recorded neurophysiological signals are analysed to mine meaningful information for the understanding of brain mechanisms or are classified to distinguish different patterns(e.g.,different cognitive states,brain diseases versus healthy controls).To date,remarkable progress has been made in both the analysis and classification of neurophysiological signals,but scholars are not feeling complacent.Consistent effort ought to be paid to advance the research of analysis and classification based on neurophysiological signals.In this paper,I express my thoughts regarding promising future directions in neurophysiological signal analysis and classification based on current developments and accomplishments.I will elucidate the thoughts after brief summaries of relevant backgrounds,accomplishments,and tendencies.According to my personal selection and preference,I mainly focus on brain connectivity,multidimensional array(tensor),multi-modality,multiple task classification,deep learning,big data,and naturalistic experiment.Hopefully,my thoughts could give a little help to inspire new ideas and contribute to the research of the analysis and classification of neurophysiological signals in some way.展开更多
文摘This paper consolidates the activity of design and fabrication of 2.9 - 4.32 GHz, 4.3 - 6.42 GHz, and 6.4 - 8.4 GHz filter bank. Novel compact microstrip bandpass filters with stub-loaded multi-mode resonators are proposed. Simulated results indicate that all the filters exhibit insertion losses less than 1.5 dB with passband ripples of 1 dB and sharp attenuations of above 40 dB in their stopbands. The maximums of input and output VSWRs are 1.742 and 1.734, respectively. Due to fabrication error, the initial measured passbands show frequency shifts and insertion losses in upper passbands deteriorate seriously. After tuning of the filter bank, measured results imply that the input and output VSWRs are found lower than 2.135 and 2.187, and the insertion loss in 1 dB bandwidth is less than 2.52 dB. Filter bank has a sharp skirt and out-of-band rejection levels approaching to 40 dB in all desired stopbands except at the frequencies near 2f0.
基金supported by the Natural Science Foundation of Jiangsu Province under Grant BK20201438by the Natural Science Research Project of Jiangsu Provincial Institutions of Higher Education under Grant 20KJA510002by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX202825.
文摘This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realization of a quasi-planar DP antenna.It combines the dual advantages of the conventional microstrip patch(MP)antenna and dielectric resonator(DR)antenna in terms of profile,gain,bandwidth,radiation efficiency,and design freedom.Furthermore,the DP antenna inherits the multi-mode characteristic of the DR antenna,thus it has a large number of high-order modes,including TMmn mode and TEmn mode.The high-order modes are widely applied,for example,by combining with the dominant TM10 mode to expand the bandwidth,or selecting multiple higher-order modes to implement a high-gain antenna.Additionally,the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design.In this paper,the design theories and techniques of DP antenna are introduced and investigated,including calculation and control methods of the resonant mode frequencies,analysis of the radiation mechanism,and applications of the multi-mode characteristic.This overview could provide guidance for the subsequent antenna design,thus effectively avoid time-consuming optimization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51871117 and 51671099)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35)the Gansu Provincial Science Foundation for Distinguished Young Scholars,China(Grant No.20JR10RA649).
文摘We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions,which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain.Furthermore,the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle.Our results might be beneficial for the applications of magnetic thin films in microwave devices.
基金the National Key Research and Development Program of China(No.2016YFB0100603)National Natural Science Foundation of China(No.51877193)。
文摘Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.
基金supported by the National Natural Science Foundation of China(No.11972204)。
文摘Composite cylindrical shells,as key components,are widely employed in large rotating machines.However,due to the frequency bifurcations and dense frequency spectra caused by rotation,the nonlinear vibration usually has the behavior of complex multiple internal resonances.In addition,the varying temperature fields make the responses of the system further difficult to obtain.Therefore,the multiple internal resonances of composite cylindrical shells with porosities induced by rotation with varying temperature fields are studied in this paper.Three different types of the temperature fields,the Coriolis forces,and the centrifugal force are considered here.The Hamilton principle and the modified Donnell nonlinear shell theory are used to obtain the equilibrium equations of the system,which are transformed into the ordinary differential equations(ODEs)by the multi-mode Galerkin technique.Thereafter,the pseudo-arclength continuation method,which can identify the regions of instability,is introduced to obtain the numerical results.The detailed parametric analysis of the rotating composite shells is performed.Multiple internal resonances caused by the interaction between backward and forward wave modes and the energy transfer phenomenon are detected.Besides,the nonlinear amplitude-frequency response curves are different under different temperature fields.
基金supported by grants from the National Natural Science Foundation of China,Nos. 81771216 (to JLP), 81520108010 (to BRZ),and 82101323 (to TS)the National Key R&D Program of China,No. 2018YFA0701400 (to HYL)+3 种基金the Primary Research and Development Plan of Zhejiang Province,No. 2020C03020 (to BRZ)the Key Project of Zhejiang Laboratory,No. 2018EB0ZX01 (to HYL)the Fundamental Research Funds for the Central Universities,No. 2019XZZX001-01-21 (to HYL)Preferred Foundation of Zhejiang Postdoctors,No. ZJ2021152 (to TS)。
文摘Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease. Forty-eight Parkinson’s disease patients and 39 matched healthy controls underwent genotyping and 7 T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson’s disease diagnosis. We found that, in Parkinson’s disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein(SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson’s disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson’s disease.
基金supported by the Conseil regional Midi Pyrenees(http://www.midipyrenees.fr/)entitled"Methodes Numeriques Multi-echelles pour le transport quantique"and by the ANR Project No.BLAN07-2212988 entitled"QUATRAIN")support from NSFC Projects 11071139 and NSFC Projects 10971115.
文摘The multi-mode approximation is presented to compute the interior wave function of Schr¨odinger equation.This idea is necessary to handle the multi-barrier and high dimensional resonant tunneling problems where multiple eigenvalues are considered.The accuracy and efficiency of this algorithm is demonstrated via several numerical examples.
文摘利用一种新型多模谐振器设计了三通带滤波器。新提出的多模谐振器采用四模谐振器加载两个开路枝节构成,能够产生六个传输极点。该滤波器经过仿真设计后进行实物加工,测试得到各通带的中心频率分别为2.55,3.83,6.00 GHz,相对应的插入损耗分别为0.9,0.7,2.3 d B,与仿真结果吻合良好。该滤波器具有回波损耗小、尺寸小的优点,可应用到现代无线和移动通信中。
基金supported by the Natural Science Foundation of CQ CSTC(CSTC2010DD2412)Chongqing Municipal Science and Technology Commission of Natural Science Foundation Project(KJ100512)the Research Fund Project of Chongqing University of Posts and Telecommunications(A2011-51)
文摘A novel, compact, and highly selective ultra-wideband (UWB) bandpass filter with a narrow notched band is presented. Apart from having a basic structure of a slotline multiple-mode resonator (MMR) and microstrip feed lines, this novel design introduces a cross-coupling between the input and output feed lines to enhance the filter selectivity. The design strictly follows the theory and verified by electromagnetic (EM) simulation and experiments. In addition, the narrow notched band is introduced by embedding a pair of split ring resonators (SRR) in order to reject any undesired existing radio signals that may interfere with the Federal Communications Commission (FCC)-defined UWB band. By changing the structural parameters of SRR, it can be easily tuned to any desired frequency. This filter can be integrated in UWB communication systems and efficiently improve the interference immunity from undesired signals such as wireless local area network (WLAN).
文摘This paper presents a new Ultra-WideBand (UWB) BandPass Filter (BPF) using half-wavelength Stepped-Impedance Stub-Loaded Resonator (SISLR). Analytical equations derived by the even-odd mode analysis show the new filter has two tunable transmission zeros at both sides of the passband to provide a sharp rejection and seven transmission poles inside the passband to achieve U.S. UWB performance. For verification, a UWB BPF is designed, fabricated and measured. The measured results show that the fabricated filter has a -3 dB fractional bandwidth from 3.0 GHz to 10.9 GHz and its insertion loss less than 0.9 dB over the whole passband. Furthermore, the new filter exhibits a simple topology, sharp rejection, and deep stopband suppression.
文摘We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.
基金supported by grants from the National Natural Science Foundation of China(30970823,31371007)the Beijing Municipal Science and Technology Commission(Z131100006813022)the National Key Department of Neurology funded by Chinese Health and Family Planning Committee
文摘Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD), and 75%-80% of aMCI patients finally develop AD. So, early identification of patients with aMCI or AD is of great significance for prevention and intervention. According to cross-sectional studies, it is known that the hippocampus, posterior cingulate cortex, and corpus callosum are key areas in studies based on structural MRI (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) respectively. Recently, longitudinal studies using each MRI modality have demonstrated that the neuroimaging abnormalities generally involve the posterior brain regions at the very beginning and then gradually affect the anterior areas during the progression of aMCI to AD. However, it is not known whether follow-up studies based on multi-modal neuroimaging techniques (e.g., sMRI, fMRI, and DTI) can help build effective MRI models that can be directly applied to the screening and diagnosis of aMCI and AD. Thus, in the future, large-scale multi-center follow-up studies are urgently needed, not only to build an MRI diagnostic model that can be used on a single person, but also to evaluate the variability and stability of the model in the general population. In this review, we present longitudinal studies using each MRI modality separately, and then discuss the future directions in this field.
基金supported by the National Natural Science Foundation of China (91332000,81171021,and 91132727)the Key Program for Clinical Medicine and Science and Technology,Jiangsu Provence,China ( BL2013025 and BL2014077)
文摘Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer's disease(AD). As a part of the medial temporal lobe memory system,the hippocampus is one of the brain regions affected earliest by AD neuropathology,and shows progressive degeneration as a MCI progresses to AD. Currently,no validated biomarkers can precisely predict the conversion from a MCI to AD. Therefore,there is a great need of sensitive tools for the early detection of AD progression. In this review,we summarize the specifi c structural and functional changes in the hippocampus from recent a MCI studies using neurophysiological and neuroimaging data. We suggest that a combination of advanced multi-modal neuroimaging measures in discovering biomarkers will provide more precise and sensitive measures of hippocampal changes than using only one of them. These will potentially affect early diagnosis and disease-modifying treatments. We propose a new sequential and progressive framework in which the impairment spreads from the integrity of fibers to volume and then to function in hippocampal subregions. Meanwhile,this is likely to be accompanied by progressive impairment of behavioral and neuropsychological performance in the progression of a MCI to AD.
基金funded in part by the National Natural Science Foundation of China(Grant No.61806149)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2020A1515010991)
文摘Neurophysiological signals are crucial intermediaries,through which brain activity can be quantitatively measured and brain mechanisms are able to be revealed.In particular,non-invasive neurophysiological signals,such as electroencephalogram(EEG)and functional magnetic resonance imaging(f MRI),are welcomed and frequently utilised in various studies since these signals can be non-invasively recorded without harming the human brain while they convey abundant information pertaining to brain activity.The recorded neurophysiological signals are analysed to mine meaningful information for the understanding of brain mechanisms or are classified to distinguish different patterns(e.g.,different cognitive states,brain diseases versus healthy controls).To date,remarkable progress has been made in both the analysis and classification of neurophysiological signals,but scholars are not feeling complacent.Consistent effort ought to be paid to advance the research of analysis and classification based on neurophysiological signals.In this paper,I express my thoughts regarding promising future directions in neurophysiological signal analysis and classification based on current developments and accomplishments.I will elucidate the thoughts after brief summaries of relevant backgrounds,accomplishments,and tendencies.According to my personal selection and preference,I mainly focus on brain connectivity,multidimensional array(tensor),multi-modality,multiple task classification,deep learning,big data,and naturalistic experiment.Hopefully,my thoughts could give a little help to inspire new ideas and contribute to the research of the analysis and classification of neurophysiological signals in some way.