Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article...Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.展开更多
This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectio...This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for ...This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.展开更多
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ...Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.展开更多
This paper proposes a method for multi-model ensemble forecasting based on Bayesian model averaging (BMA), aiming to improve the accuracy of tropical cyclone (TC) intensity forecasts, especially forecasts of minim...This paper proposes a method for multi-model ensemble forecasting based on Bayesian model averaging (BMA), aiming to improve the accuracy of tropical cyclone (TC) intensity forecasts, especially forecasts of minimum surface pressure at the cyclone center (Pmin)' The multi-model ensemble comprises three operational forecast models: the Global Forecast System (GFS) of NCEP, the Hurricane Weather Research and Forecasting (HWRF) models of NCEP, and the Integrated Forecasting System (IFS) of ECMWF. The mean of a predictive distribution is taken as the BMA forecast. In this investigation, bias correction of the minimum surface pressure was applied at each forecast lead time, and the distribution (or probability density function, PDF) of emin was used and transformed. Based on summer season forecasts for three years, we found that the intensity errors in TC forecast from the three models var-ied significantly. The HWRF had a much smaller intensity error for short lead-time forecasts. To demonstrate the proposed methodology, cross validation was implemented to ensure more efficient use of the sample data and more reliable testing. Comparative analysis shows that BMA for this three-model ensemble, after bias correction and distri-bution transformation, provided more accurate forecasts than did the best of the ensemble members (HWRF), with a 5%-7% decrease in root-mean-square error on average. BMA also outperformed the multi-model ensemble, and it produced "predictive variance" that represented the forecast uncertainty of the member models. In a word, the BMA method used in the multi-model ensemble forecasting was successful in TC intensity forecasts, and it has the poten-tial to be applied to routine operational forecasting.展开更多
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a m...The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China.展开更多
Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Pr...Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.展开更多
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in ni...The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.展开更多
This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–Nati...This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error.展开更多
Ensemble techniques have been used to generate daily numerical weather forecasts since the 1990s in numerical centers around the world due to the increase in computation ability. One of the main purposes of numerical ...Ensemble techniques have been used to generate daily numerical weather forecasts since the 1990s in numerical centers around the world due to the increase in computation ability. One of the main purposes of numerical ensemble forecasts is to try to assimilate the initial uncertainty (initial error) and the forecast uncertainty (forecast error) by applying either the initial perturbation method or the multi-model/multiphysics method. In fact, the mean of an ensemble forecast offers a better forecast than a deterministic (or control) forecast after a short lead time (3-5 days) for global modelling applications. There is about a 1-2-day improvement in the forecast skill when using an ensemble mean instead of a single forecast for longer lead-time. The skillful forecast (65% and above of an anomaly correlation) could be extended to 8 days (or longer) by present-day ensemble forecast systems. Furthermore, ensemble forecasts can deliver a probabilistic forecast to the users, which is based on the probability density function (PDF) instead of a single-value forecast from a traditional deterministic system. It has long been recognized that the ensemble forecast not only improves our weather forecast predictability but also offers a remarkable forecast for the future uncertainty, such as the relative measure of predictability (RMOP) and probabilistic quantitative precipitation forecast (PQPF). Not surprisingly, the success of the ensemble forecast and its wide application greatly increase the confidence of model developers and research communities.展开更多
In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer ...In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010. The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts (QPF) and probabilistic QPF, but it has a systematic bias in forecasting near-surface variables. Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts. In this study, the perturbation extraction and inflation method (proposed with the single case study in Part I) was further applied to the full season with different inflation factors. This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables. The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels.展开更多
A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple...A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.展开更多
A time-lagged ensemble method is used to improve 6-15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model,version 2.0.1.The approach averages the deterministic predictions...A time-lagged ensemble method is used to improve 6-15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model,version 2.0.1.The approach averages the deterministic predictions of precipitation from the most recent model run and from earlier runs,all at the same forecast valid time.This lagged average forecast (LAF) method assigns equal weight to each ensemble member and produces a forecast by taking the ensemble mean.Our analyses of the Equitable Threat Score,the Hanssen and Kuipers Score,and the frequency bias indicate that the LAF using five members at time-lagged intervals of 6 h improves 6-15 day forecasts of precipitation frequency above 1 mm d-1 and 5 mm d-1 in many regions of China,and is more effective than the LAF method with selection of the time-lagged interval of 12 or 24 h between ensemble members.In particular,significant improvements are seen over regions where the frequencies of rainfall days are higher than about 40%-50% in the summer season; these regions include northeastern and central to southern China,and the southeastem Tibetan Plateau.展开更多
Based on the Global Regional Assimilation and Prediction System-Tropical Cyclone Model(GRAPES-TCM),an ensemble forecast experiment was performed,in which Typhoon Wipha during the period immediately prior to landfall w...Based on the Global Regional Assimilation and Prediction System-Tropical Cyclone Model(GRAPES-TCM),an ensemble forecast experiment was performed,in which Typhoon Wipha during the period immediately prior to landfall was selected for the study and the breeding of growing mode(BGM) method was used to perturb the initial conditions of the vortex field and the environment field.The results of the experiment indicate that each member had a different initial status in BGM processing and they show a reasonable spread among members along with the forecast phase.Changes in the large-scale field,thermodynamic structure,and spread among members took place when Wipha made landfall.The steering effect of the large-scale field and the interaction between the thermodynamics and the dynamics resulted in different tracks of the members.Meanwhile,the forecast uncertainty increased.In summary,the ensemble mean did not perform as well as the control forecast,but the cluster mean provided some useful information,and performed better than the control in some instances.The position error was 34 km for 24 h forecast,153 km for 48 h forecast,and 191 km for 66 h forecast.The strike probability chart qualitatively described the forecast uncertainty.展开更多
The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experime...The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also usecl to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the. future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.展开更多
In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (...In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.展开更多
Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin...Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.展开更多
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
文摘Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.
基金Key Project of the National Natural Science Foundation of China (42330611)National Natural Science Foundation of China (42105008)。
文摘This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.
基金Special Research Program for Public Welfare(Meteorology)of China(GYHY200906009,GYHY201006015,GYHY200906007)National Natural Science Foundation of China(4107503541475044)
文摘This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.
基金the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the innovation-driven project of the Central South University(2019CX005).
文摘Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.
基金Supported by the National Natural Science Foundation of China(40830957)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106018)+2 种基金National Basic Research and Development(973)Program of China(2011CB421504)National Science and Technology Support Program of China(2010BAC51B05)Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX2-YW-Q1-02)
文摘This paper proposes a method for multi-model ensemble forecasting based on Bayesian model averaging (BMA), aiming to improve the accuracy of tropical cyclone (TC) intensity forecasts, especially forecasts of minimum surface pressure at the cyclone center (Pmin)' The multi-model ensemble comprises three operational forecast models: the Global Forecast System (GFS) of NCEP, the Hurricane Weather Research and Forecasting (HWRF) models of NCEP, and the Integrated Forecasting System (IFS) of ECMWF. The mean of a predictive distribution is taken as the BMA forecast. In this investigation, bias correction of the minimum surface pressure was applied at each forecast lead time, and the distribution (or probability density function, PDF) of emin was used and transformed. Based on summer season forecasts for three years, we found that the intensity errors in TC forecast from the three models var-ied significantly. The HWRF had a much smaller intensity error for short lead-time forecasts. To demonstrate the proposed methodology, cross validation was implemented to ensure more efficient use of the sample data and more reliable testing. Comparative analysis shows that BMA for this three-model ensemble, after bias correction and distri-bution transformation, provided more accurate forecasts than did the best of the ensemble members (HWRF), with a 5%-7% decrease in root-mean-square error on average. BMA also outperformed the multi-model ensemble, and it produced "predictive variance" that represented the forecast uncertainty of the member models. In a word, the BMA method used in the multi-model ensemble forecasting was successful in TC intensity forecasts, and it has the poten-tial to be applied to routine operational forecasting.
文摘The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China.
基金Supported by Chinese Meteorological Administration's Special Funds(Meteorology) for Scientific Research on Public Causes( GYHY200906007)Gale Forecast Item of the Shengli Oil Field Observatory (2008001)~~
文摘Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.
基金The National Nat-ural Science Foundation of China (NSFC), Grant Nos.90711003, 40375014the program of GYHY200706005, and the APCC Visiting Scientist Program jointly supportedthis work.
文摘The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.
基金jointly sponsored by the National Key Research and Development Program of China (2018YFC1506402)the National Natural Science Foundation of China (Grant Nos.41475100 and 41805081)the Global Regional Assimilation and Prediction System Development Program of the China Meteorological Administration (GRAPES-FZZX2018)
文摘This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error.
文摘Ensemble techniques have been used to generate daily numerical weather forecasts since the 1990s in numerical centers around the world due to the increase in computation ability. One of the main purposes of numerical ensemble forecasts is to try to assimilate the initial uncertainty (initial error) and the forecast uncertainty (forecast error) by applying either the initial perturbation method or the multi-model/multiphysics method. In fact, the mean of an ensemble forecast offers a better forecast than a deterministic (or control) forecast after a short lead time (3-5 days) for global modelling applications. There is about a 1-2-day improvement in the forecast skill when using an ensemble mean instead of a single forecast for longer lead-time. The skillful forecast (65% and above of an anomaly correlation) could be extended to 8 days (or longer) by present-day ensemble forecast systems. Furthermore, ensemble forecasts can deliver a probabilistic forecast to the users, which is based on the probability density function (PDF) instead of a single-value forecast from a traditional deterministic system. It has long been recognized that the ensemble forecast not only improves our weather forecast predictability but also offers a remarkable forecast for the future uncertainty, such as the relative measure of predictability (RMOP) and probabilistic quantitative precipitation forecast (PQPF). Not surprisingly, the success of the ensemble forecast and its wide application greatly increase the confidence of model developers and research communities.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 40875079)
文摘In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010. The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts (QPF) and probabilistic QPF, but it has a systematic bias in forecasting near-surface variables. Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts. In this study, the perturbation extraction and inflation method (proposed with the single case study in Part I) was further applied to the full season with different inflation factors. This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables. The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels.
基金supported by the project of the NSFC (Grants No. 40875079)
文摘A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.
基金supported by the National Basic Research Program of China (973 Program: Grant No. 2010CB951902)the Special Program for China Meteorology Trade (Grant No. GYHY201306020)the Technology Support Program of China (Grant No. 2009BAC51B03)
文摘A time-lagged ensemble method is used to improve 6-15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model,version 2.0.1.The approach averages the deterministic predictions of precipitation from the most recent model run and from earlier runs,all at the same forecast valid time.This lagged average forecast (LAF) method assigns equal weight to each ensemble member and produces a forecast by taking the ensemble mean.Our analyses of the Equitable Threat Score,the Hanssen and Kuipers Score,and the frequency bias indicate that the LAF using five members at time-lagged intervals of 6 h improves 6-15 day forecasts of precipitation frequency above 1 mm d-1 and 5 mm d-1 in many regions of China,and is more effective than the LAF method with selection of the time-lagged interval of 12 or 24 h between ensemble members.In particular,significant improvements are seen over regions where the frequencies of rainfall days are higher than about 40%-50% in the summer season; these regions include northeastern and central to southern China,and the southeastem Tibetan Plateau.
基金National Basic Research Program of China (2009CB421500)Shanghai Science and Technology Program (10231203700)National Natural Science Foundation of China (40921160381)
文摘Based on the Global Regional Assimilation and Prediction System-Tropical Cyclone Model(GRAPES-TCM),an ensemble forecast experiment was performed,in which Typhoon Wipha during the period immediately prior to landfall was selected for the study and the breeding of growing mode(BGM) method was used to perturb the initial conditions of the vortex field and the environment field.The results of the experiment indicate that each member had a different initial status in BGM processing and they show a reasonable spread among members along with the forecast phase.Changes in the large-scale field,thermodynamic structure,and spread among members took place when Wipha made landfall.The steering effect of the large-scale field and the interaction between the thermodynamics and the dynamics resulted in different tracks of the members.Meanwhile,the forecast uncertainty increased.In summary,the ensemble mean did not perform as well as the control forecast,but the cluster mean provided some useful information,and performed better than the control in some instances.The position error was 34 km for 24 h forecast,153 km for 48 h forecast,and 191 km for 66 h forecast.The strike probability chart qualitatively described the forecast uncertainty.
文摘The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also usecl to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the. future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.4140508391437220 and 41305066)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2015JJ3098)the Fund Project for The Education Department of Hunan Province(Grant No.14C0897)
文摘In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.
基金National Natural Science Foundation of China(41475060,41275067,41405060)
文摘Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.