Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ...Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.展开更多
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet...For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.展开更多
Recent advances in automation and digitization enable the close integration of physical devices with their virtual counterparts, facilitating the real-time modeling and optimization of a multitude of processes in an a...Recent advances in automation and digitization enable the close integration of physical devices with their virtual counterparts, facilitating the real-time modeling and optimization of a multitude of processes in an automatic way. The rich and continuously updated data environment provided by such systems makes it possible for decisions to be made over time to drive the process toward optimal targets. In many man- ufacturing processes, in order to achieve an overall optimal process, the simultaneous assessment of mul- tiple objective functions related to process performance and cost is necessary. In this work, a multi- objective optimal experimental design framework is proposed to enhance the ef ciency of online model-identi cation platforms. The proposed framework permits exibility in the choice of trade-off experimental design solutions, which are calculated online that is, during the execution of experiments. The application of this framework to improve the online identi cation of kinetic models in ow reactors is illustrated using a case study in which a kinetic model is identi ed for the esteri cation of benzoic acid and ethanol in a microreactor.展开更多
Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affe...Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affects their long-term reliability and effectiveness and creates hidden dangers for surgery.In this study,a multi-objective optimal design for the cutting performance and fatigue life of ultrasonic scalpels was proposed using finite element analysis and fatigue simulation.The optimal design parameters of resonance frequency and amplitude were determined.By setting the transition fillet and keeping the gain structure away from the node position to enable the scalpel to have a high service life with excellent cutting performance.The frequency modulation method of setting the vibration node bosses at the node position and setting the vibration antinode grooves at the antinode position was compared.Then,the mechanism of the influence of various design elements,such as tip,shank,node position,and antinode position,on the resonance frequency,amplitude,and fatigue life of the ultrasonic scalpel was analyzed,and the optimal design principles of the ultrasonic scalpel were obtained.The proposed ultrasonic scalpel design was confirmed by simulations,impedance measurements,and liver tissue cutting experiments,demonstrating its feasibility and enhanced performance.This research introduces innovative design strategies to improve the fatigue life and performance of ultrasonic scalpels to address an important issue in minimally invasive surgery.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ...The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.展开更多
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut...Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.展开更多
It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure acc...It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively.展开更多
Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with...Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with the concept of relative importance degree (RID) is utilized to transfer multi-objective optimization (MO-O) model into a single-objective optimization (SO-O) framework. The treatment of process condensate in synthesisa mmonia plant is taken as example to illustrate the optimization procedure, and the satisfactory result demonstrates feasibility and effectiveness of the suggested method.展开更多
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose...Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.展开更多
In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and en...In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.展开更多
In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the wat...In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the water distribution system design.On the one hand the cost of water distribution system including capital,operational,and maintenance cost is mostly concerned issue by the utilities all the time;on the other hand improving the performance of water distribution systems is of equivalent importance,which is often conflicting with the previous goal.Many performance metrics of water networks are developed in recent years,including total or maximum pressure deficit,resilience,inequity,probabilistic robustness,and risk measure.In this paper,a new resilience metric based on the energy analysis of water distribution systems is proposed.Two optimization objectives are comprised of capital cost and the new resilience index.A heuristic algorithm,speedconstrained multi-objective particle swarm optimization( SMPSO) extended on the basis of the multi-objective particle swarm algorithm,is introduced to compare with another state-of-the-art heuristic algorithm,NSGA-II.The solutions are evaluated by two metrics,namely spread and hypervolume.To illustrate the capability of SMPSO to efficiently identify good designs,two benchmark problems( two-loop network and Hanoi network) are employed.From several aspects the results demonstrate that SMPSO is a competitive and potential tool to tackle with the optimization problem of complex systems.展开更多
Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy patter...Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.展开更多
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob...A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.展开更多
It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specificat...It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]展开更多
Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trai...Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements.展开更多
This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors a...This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.展开更多
In this paper,a new fuzzy approach is applied to optimal design of the anti-skid control for electric vehicles.The anti-skid control is used to maintain the wheel speed when there are uncertainties.The control is able...In this paper,a new fuzzy approach is applied to optimal design of the anti-skid control for electric vehicles.The anti-skid control is used to maintain the wheel speed when there are uncertainties.The control is able to provide an appropriate torque for wheels when the vehicle is about to skid.The friction coefficient and the moments of inertia of wheels and motor are considered as uncertain parameters.These nonlinear,bounded and time-varying uncertainties are described by fuzzy set theory.The control is deterministic and is not based on IF-THEN fuzzy rules.Then,the optimal design for this fuzzy system and control cost is proposed by fuzzy information.In this way,the uniform boundedness and uniform ultimate boundedness are guaranteed and the average fuzzy performance is minimized.Numerical simulations show that the control can prevent vehicle skidding with the minimum control cost under uncertainties.展开更多
This paper proposes a new type of nonlinear controllers and a large phase angle allowance design method based on the multi-objective optimal control system. With the proposed method, the performance of the system beco...This paper proposes a new type of nonlinear controllers and a large phase angle allowance design method based on the multi-objective optimal control system. With the proposed method, the performance of the system becomes better than that of the original system. Then, an example of the radar servo system is designed with a large phase angle allowance multi-objective optimal design method. Finally, the performance based on computer simulation demonstrates that the multi-objective optimal system is superior to linear optimal systems.展开更多
A problem of upgrading to the Next Generation Wireless Network (NGWN) is backward compatibility with pre-existing networks, the cost and operational benefit of gradually enhancing networks, by replacing, upgrading and...A problem of upgrading to the Next Generation Wireless Network (NGWN) is backward compatibility with pre-existing networks, the cost and operational benefit of gradually enhancing networks, by replacing, upgrading and installing new wireless network infrastructure elements that can accommodate both voice and data demand. In this paper, we propose a new genetic algorithm has double population to solve Multi-Objectives Optimal of Upgrading Infrastructure (MOOUI) problem in NGWN. We modeling network topology for MOOUI problem has two levels in which mobile users are sources and both base stations and base station controllers are concentrators. Our objective function is the sources to concentrators connectivity cost as well as the cost of the installation, connection, replacement, and capacity upgrade of infrastructure equipment. We generate two populations satisfy constraints and combine them to build solutions and evaluate the performance of my algorithm with data randomly generated. Numerical results show that our algorithm is a promising approach to solve this problem.展开更多
基金This work was supported by Sichuan Science and Technology Program under the Contract No.2020JDJQ0036.
文摘Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507016。
文摘For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.
文摘Recent advances in automation and digitization enable the close integration of physical devices with their virtual counterparts, facilitating the real-time modeling and optimization of a multitude of processes in an automatic way. The rich and continuously updated data environment provided by such systems makes it possible for decisions to be made over time to drive the process toward optimal targets. In many man- ufacturing processes, in order to achieve an overall optimal process, the simultaneous assessment of mul- tiple objective functions related to process performance and cost is necessary. In this work, a multi- objective optimal experimental design framework is proposed to enhance the ef ciency of online model-identi cation platforms. The proposed framework permits exibility in the choice of trade-off experimental design solutions, which are calculated online that is, during the execution of experiments. The application of this framework to improve the online identi cation of kinetic models in ow reactors is illustrated using a case study in which a kinetic model is identi ed for the esteri cation of benzoic acid and ethanol in a microreactor.
基金Supported by National Natural Science Foundation of China (Grant Nos.52005199,42241149)Shenzhen Fundamental Research Program of China (Grant Nos.JCYJ20200109150425085,JCYJ20220818102601004)+1 种基金Knowledge Innovation Program of Wuhan-Basic Research of China (Grant No.2022010801010203)Shenzhen Science and Technology Program of China (Grant Nos.JSGG20201103100001004,JSGG20220831105800001)。
文摘Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affects their long-term reliability and effectiveness and creates hidden dangers for surgery.In this study,a multi-objective optimal design for the cutting performance and fatigue life of ultrasonic scalpels was proposed using finite element analysis and fatigue simulation.The optimal design parameters of resonance frequency and amplitude were determined.By setting the transition fillet and keeping the gain structure away from the node position to enable the scalpel to have a high service life with excellent cutting performance.The frequency modulation method of setting the vibration node bosses at the node position and setting the vibration antinode grooves at the antinode position was compared.Then,the mechanism of the influence of various design elements,such as tip,shank,node position,and antinode position,on the resonance frequency,amplitude,and fatigue life of the ultrasonic scalpel was analyzed,and the optimal design principles of the ultrasonic scalpel were obtained.The proposed ultrasonic scalpel design was confirmed by simulations,impedance measurements,and liver tissue cutting experiments,demonstrating its feasibility and enhanced performance.This research introduces innovative design strategies to improve the fatigue life and performance of ultrasonic scalpels to address an important issue in minimally invasive surgery.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
基金the National Natural Science Foundation of China(Grant Number 52075553)the Postgraduate Research and Innovation Project of Central South University(School-Enterprise Association)(Grant Number 2021XQLH014).
文摘The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA04Z132)National Natural Science Foundation of China(Grant No. 51175379)
文摘Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
基金supported by National Natural Science Foundation of China(Grant No.50975033,Grant No.60875046)Program of Education Office of Liaoning Province,China(Grant No.LT2010074)
文摘It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively.
文摘Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with the concept of relative importance degree (RID) is utilized to transfer multi-objective optimization (MO-O) model into a single-objective optimization (SO-O) framework. The treatment of process condensate in synthesisa mmonia plant is taken as example to illustrate the optimization procedure, and the satisfactory result demonstrates feasibility and effectiveness of the suggested method.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.11902183)the Doctoral Research Foundation of Shandong University of Technology(Grant No.4041/418017).
文摘Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.
基金Supported by Dalian University of Technology, the US National Science Foundation (No.CTS-0407494) and the Texas Advanced Technology program (No.003581-0044-2003)
文摘In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.
基金Sponsored by the Project of Application Technology Research and Development Plan in Heilongjiang Province(Grant No.GA13C302)
文摘In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the water distribution system design.On the one hand the cost of water distribution system including capital,operational,and maintenance cost is mostly concerned issue by the utilities all the time;on the other hand improving the performance of water distribution systems is of equivalent importance,which is often conflicting with the previous goal.Many performance metrics of water networks are developed in recent years,including total or maximum pressure deficit,resilience,inequity,probabilistic robustness,and risk measure.In this paper,a new resilience metric based on the energy analysis of water distribution systems is proposed.Two optimization objectives are comprised of capital cost and the new resilience index.A heuristic algorithm,speedconstrained multi-objective particle swarm optimization( SMPSO) extended on the basis of the multi-objective particle swarm algorithm,is introduced to compare with another state-of-the-art heuristic algorithm,NSGA-II.The solutions are evaluated by two metrics,namely spread and hypervolume.To illustrate the capability of SMPSO to efficiently identify good designs,two benchmark problems( two-loop network and Hanoi network) are employed.From several aspects the results demonstrate that SMPSO is a competitive and potential tool to tackle with the optimization problem of complex systems.
文摘Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.
基金the National Natural Science Foundations of China (60873099 )
文摘A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.
基金supported by the UC MEXUSCONACyT("Cell-to-cell Mapping for Global Multi-objective Optimization")the National Natural Science Foundation of China(11172197)+1 种基金the Natural Science Foundation of Tianjin through a key-project grantsupport from CONACyT through a scholarship to pursue graduate studies at the Computer Science Department of CINVESTAV-IPN
文摘It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]
文摘Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements.
文摘This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.
基金Supported by China Scholarship Council(Grant No.201806690019)Fundamental Research Funds for Chinese Central Universities(Grant No.300102258306)Anhui Provincial Natural Science Foundation of China(Grant No.1908085QE194).
文摘In this paper,a new fuzzy approach is applied to optimal design of the anti-skid control for electric vehicles.The anti-skid control is used to maintain the wheel speed when there are uncertainties.The control is able to provide an appropriate torque for wheels when the vehicle is about to skid.The friction coefficient and the moments of inertia of wheels and motor are considered as uncertain parameters.These nonlinear,bounded and time-varying uncertainties are described by fuzzy set theory.The control is deterministic and is not based on IF-THEN fuzzy rules.Then,the optimal design for this fuzzy system and control cost is proposed by fuzzy information.In this way,the uniform boundedness and uniform ultimate boundedness are guaranteed and the average fuzzy performance is minimized.Numerical simulations show that the control can prevent vehicle skidding with the minimum control cost under uncertainties.
基金partly supported by the Natural Science Foundation of Guangdong (No.06023131)
文摘This paper proposes a new type of nonlinear controllers and a large phase angle allowance design method based on the multi-objective optimal control system. With the proposed method, the performance of the system becomes better than that of the original system. Then, an example of the radar servo system is designed with a large phase angle allowance multi-objective optimal design method. Finally, the performance based on computer simulation demonstrates that the multi-objective optimal system is superior to linear optimal systems.
文摘A problem of upgrading to the Next Generation Wireless Network (NGWN) is backward compatibility with pre-existing networks, the cost and operational benefit of gradually enhancing networks, by replacing, upgrading and installing new wireless network infrastructure elements that can accommodate both voice and data demand. In this paper, we propose a new genetic algorithm has double population to solve Multi-Objectives Optimal of Upgrading Infrastructure (MOOUI) problem in NGWN. We modeling network topology for MOOUI problem has two levels in which mobile users are sources and both base stations and base station controllers are concentrators. Our objective function is the sources to concentrators connectivity cost as well as the cost of the installation, connection, replacement, and capacity upgrade of infrastructure equipment. We generate two populations satisfy constraints and combine them to build solutions and evaluate the performance of my algorithm with data randomly generated. Numerical results show that our algorithm is a promising approach to solve this problem.