期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-objective test case prioritization based on multi-population cooperative particle swarm optimization 被引量:3
1
作者 Wang Hongman Li Jinzhong +1 位作者 Xing Ying Zhou Xiaoguang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2020年第1期38-50,共13页
Test case prioritization(TCP) technique is an efficient approach to improve regression testing activities. With the continuous improvement of industrial testing requirements, traditional single-objective TCP is limite... Test case prioritization(TCP) technique is an efficient approach to improve regression testing activities. With the continuous improvement of industrial testing requirements, traditional single-objective TCP is limited greatly, and multi-objective test case prioritization(MOTCP) technique becomes one of the hot topics in the field of software testing in recent years. Considering the problems of traditional genetic algorithm(GA) and swarm intelligence algorithm in solving MOTCP problems, such as falling into local optimum quickly and weak stability of the algorithm, a MOTCP algorithm based on multi-population cooperative particle swarm optimization(MPPSO) was proposed in this paper. Empirical studies were conducted to study the influence of iteration times on the proposed MOTCP algorithm, and compare the performances of MOTCP based on single-population particle swarm optimization(PSO) and MOTCP based on non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) with the MOTCP algorithm proposed in this paper. The results of experiments show that the TCP algorithm based on MPPSO has stronger global optimization ability, is not easy to fall into local optimum, and can solve the MOTCP problem better than TCP algorithm based on the single-population PSO and NSGA-Ⅱ. 展开更多
关键词 regression testing test case prioritization MULTI-POPULATION COOPERATIVE particle SWARM OPTIMIZATION multi-objective OPTIMIZATION
原文传递
面向多目标测试用例优先排序的蚁群算法信息素更新策略 被引量:10
2
作者 邢行 尚颖 +1 位作者 赵瑞莲 李征 《计算机应用》 CSCD 北大核心 2016年第9期2497-2502,共6页
针对蚁群算法在求解多目标测试用例优先排序(MOTCP)时收敛速度缓慢、易陷入局部最优的问题,提出一种基于上位基因段(ETS)的信息素更新策略。利用测试用例序列中ETS可以决定适应度值的变化,选取ETS作为信息素更新范围,再根据ETS中测试用... 针对蚁群算法在求解多目标测试用例优先排序(MOTCP)时收敛速度缓慢、易陷入局部最优的问题,提出一种基于上位基因段(ETS)的信息素更新策略。利用测试用例序列中ETS可以决定适应度值的变化,选取ETS作为信息素更新范围,再根据ETS中测试用例间的适应度增量和测试用例的执行时间更新路径上的信息素值。为进一步提升蚁群算法求解效率、节省蚂蚁依次访问测试用例序列的时间,优化的蚁群算法还通过估算ETS长度重新设置蚂蚁遍历测试用例的搜索终点。实验结果表明,与优化前的蚁群算法及NSGA-Ⅱ相比,优化后的蚁群算法能提升求解MOTCP问题时的收敛速度,获得更优的Pareto解集。 展开更多
关键词 蚁群算法 信息素更新 多目标的测试用例优先排序 回归测试 上位基因段
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部