A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple l...A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.展开更多
A new method is presented to generate two-directional (2D) grid multi-scroll chaotic attractors via a specific form of the sine function and sign function series, which are applied to increase saddle points of index 2...A new method is presented to generate two-directional (2D) grid multi-scroll chaotic attractors via a specific form of the sine function and sign function series, which are applied to increase saddle points of index 2. The scroll number in the x-direction is modified easily through changing the thresholds of the specific form of the sine function, while the scroll number in the y-direction is controlled by the sign function series. Some basic dynamical properties, such as equilibrium points, bifurcation diagram, phase portraits, and Lyapunov exponents spectrum are studied. Furthermore, the electronic circuit of the system is designed and its simulation results are given by Multisim 10.展开更多
To improve the complexity of chaotic signals,in this paper we first put forward a new three-dimensional quadratic fractional-order multi-scroll hidden chaotic system,then we use the Adomian decomposition algorithm to ...To improve the complexity of chaotic signals,in this paper we first put forward a new three-dimensional quadratic fractional-order multi-scroll hidden chaotic system,then we use the Adomian decomposition algorithm to solve the proposed fractional-order chaotic system and obtain the chaotic phase diagrams of different orders,as well as the Lyaponov exponent spectrum,bifurcation diagram,and SE complexity of the 0.99-order system.In the process of analyzing the system,we find that the system possesses the dynamic behaviors of hidden attractors and hidden bifurcations.Next,we also propose a method of using the Lyapunov exponents to describe the basins of attraction of the chaotic system in the matlab environment for the first time,and obtain the basins of attraction under different order conditions.Finally,we construct an analog circuit system of the fractional-order chaotic system by using an equivalent circuit module of the fractional-order integral operators,thus realizing the 0.9-order multi-scroll hidden chaotic attractors.展开更多
This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be gen...This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.展开更多
A method of generating multi-double scroll attractors is proposed based on the memristor Hopfield neural network(HNN)under pulse control.First,the original hyperbolic-type memristor is added to the neural network math...A method of generating multi-double scroll attractors is proposed based on the memristor Hopfield neural network(HNN)under pulse control.First,the original hyperbolic-type memristor is added to the neural network mathematical model,and the influence of this memristor on the dynamic behavior of the new HNN is analyzed.The numerical results show that after adding the memristor,the abundant dynamic behaviors such as chaos coexistence,period coexistence and chaos period coexistence can be observed when the initial value of the system is changed.Then the logic pulse is added to the external memristor.It is found that the equilibrium point of the HNN can multiply and generate multi-double scroll attractors after the pulse stimulation.When the number of logical pulses is changed,the number of multi-double scroll attractors will also change,so that the pulse can control the generation of multi-double scroll attractors.Finally,the HNN circuit under pulsed stimulation was realized by circuit simulation,and the results verified the correctness of the numerical results.展开更多
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
This paper proposes a novel approach for generating a multi-scroll chaotic system. Together with the theoretical design and numerical simulations, three different types of attractor are available, governed by construc...This paper proposes a novel approach for generating a multi-scroll chaotic system. Together with the theoretical design and numerical simulations, three different types of attractor are available, governed by constructing triangular wave, sawtooth wave and hysteresis sequence. The presented new multi-scroll chaotic system is different from the classical multi-scroll chaotic Chua system in dimensionless state equations, nonlinear functions and maximum Lyapunov exponents. In addition, the basic dynamical behaviours, including equilibrium points, eigenvalues, eigenvectors, eigenplanes, bifurcation diagrams and Lyapunov exponents, are further investigated. The success of the design is illustrated by both numerical simulations and circuit experiments.展开更多
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can gener...A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.展开更多
In this paper a new simple multi-scroll chaotic generator is studied. The characteristic of this new multi-scroll chaotic generator is that it is easy to generate different number of scroll chaotic attractors through ...In this paper a new simple multi-scroll chaotic generator is studied. The characteristic of this new multi-scroll chaotic generator is that it is easy to generate different number of scroll chaotic attractors through modifying the nature number n after fixing the suitable system parameters and it does not need complex mathematical derivation. Various number of scroll chaotic attractors are illustrated not only by computer simulation but also by the realization of an electronic circuit experiment on Electronic Workbench (EWB).展开更多
In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Mira...In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.展开更多
Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are...Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are induced by dif- ferent mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically.展开更多
In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller desig...In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.展开更多
In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded doma...In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).展开更多
This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz s...This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.展开更多
A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition beha...A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition behaviors of hyperchaotic attractors, periodic orbits, and unstable sinks. Especially, for the nonzero-valued control parameter, there exists no equilibrium in the proposed system, leading to the formation of various hidden attractors with complex transient dynamics. The research results indicate that the dynamics of the system shows weak chaotic robustness and depends greatly on the initial states.展开更多
A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference sche...A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.展开更多
The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov en...The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.展开更多
In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these ...In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.展开更多
Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: ...Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51177117 and 51307130)
文摘A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.
文摘A new method is presented to generate two-directional (2D) grid multi-scroll chaotic attractors via a specific form of the sine function and sign function series, which are applied to increase saddle points of index 2. The scroll number in the x-direction is modified easily through changing the thresholds of the specific form of the sine function, while the scroll number in the y-direction is controlled by the sign function series. Some basic dynamical properties, such as equilibrium points, bifurcation diagram, phase portraits, and Lyapunov exponents spectrum are studied. Furthermore, the electronic circuit of the system is designed and its simulation results are given by Multisim 10.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61561022 and 61672226)。
文摘To improve the complexity of chaotic signals,in this paper we first put forward a new three-dimensional quadratic fractional-order multi-scroll hidden chaotic system,then we use the Adomian decomposition algorithm to solve the proposed fractional-order chaotic system and obtain the chaotic phase diagrams of different orders,as well as the Lyaponov exponent spectrum,bifurcation diagram,and SE complexity of the 0.99-order system.In the process of analyzing the system,we find that the system possesses the dynamic behaviors of hidden attractors and hidden bifurcations.Next,we also propose a method of using the Lyapunov exponents to describe the basins of attraction of the chaotic system in the matlab environment for the first time,and obtain the basins of attraction under different order conditions.Finally,we construct an analog circuit system of the fractional-order chaotic system by using an equivalent circuit module of the fractional-order integral operators,thus realizing the 0.9-order multi-scroll hidden chaotic attractors.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60972069)the Science and Technology Foundation of the Education Department of Chongqing (Grant No. KJ090513)
文摘This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.
基金supported by the Guizhou Province Natural Science Foundation(Qiankehe Fundamentals-ZK[2023]General-055)Guizhou Province Science and Technology Support Plan Project(Qiankehe Fundamentals[2023]General-465)。
文摘A method of generating multi-double scroll attractors is proposed based on the memristor Hopfield neural network(HNN)under pulse control.First,the original hyperbolic-type memristor is added to the neural network mathematical model,and the influence of this memristor on the dynamic behavior of the new HNN is analyzed.The numerical results show that after adding the memristor,the abundant dynamic behaviors such as chaos coexistence,period coexistence and chaos period coexistence can be observed when the initial value of the system is changed.Then the logic pulse is added to the external memristor.It is found that the equilibrium point of the HNN can multiply and generate multi-double scroll attractors after the pulse stimulation.When the number of logical pulses is changed,the number of multi-double scroll attractors will also change,so that the pulse can control the generation of multi-double scroll attractors.Finally,the HNN circuit under pulsed stimulation was realized by circuit simulation,and the results verified the correctness of the numerical results.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572073 and 60871025)the Natural Science Foundation of Guangdong Province,China (Grant Nos 8151009001000060,5001818 and 8351009001000002)
文摘This paper proposes a novel approach for generating a multi-scroll chaotic system. Together with the theoretical design and numerical simulations, three different types of attractor are available, governed by constructing triangular wave, sawtooth wave and hysteresis sequence. The presented new multi-scroll chaotic system is different from the classical multi-scroll chaotic Chua system in dimensionless state equations, nonlinear functions and maximum Lyapunov exponents. In addition, the basic dynamical behaviours, including equilibrium points, eigenvalues, eigenvectors, eigenplanes, bifurcation diagrams and Lyapunov exponents, are further investigated. The success of the design is illustrated by both numerical simulations and circuit experiments.
文摘A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.
文摘In this paper a new simple multi-scroll chaotic generator is studied. The characteristic of this new multi-scroll chaotic generator is that it is easy to generate different number of scroll chaotic attractors through modifying the nature number n after fixing the suitable system parameters and it does not need complex mathematical derivation. Various number of scroll chaotic attractors are illustrated not only by computer simulation but also by the realization of an electronic circuit experiment on Electronic Workbench (EWB).
基金supported by NSFC Grant (11031003)the Fundamental Research Funds for the Central Universities+1 种基金support by Fund of excellent young teachers in Shanghai (shgcjs008)Initial Fund of SUES (A-0501-11-016)
文摘In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275053)
文摘Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are induced by dif- ferent mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically.
基金supported by the NSF of China(11031003, 10871040)
文摘In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Natural Science Foundation of Zhejiang Province (Grant Nos M603217 and Y104414).
文摘In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.
文摘In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).
文摘This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.
基金supported by the National Natural Science Foundation of China(Grant No.51277017)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2012583)the Fundamental Research Funds for the Central Universities of China(Grant No.NS2014038)
文摘A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition behaviors of hyperchaotic attractors, periodic orbits, and unstable sinks. Especially, for the nonzero-valued control parameter, there exists no equilibrium in the proposed system, leading to the formation of various hidden attractors with complex transient dynamics. The research results indicate that the dynamics of the system shows weak chaotic robustness and depends greatly on the initial states.
基金Supported by the National Natural Science Foundation of China(10371077)
文摘A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.
基金Project supported by the National Natural Science Foundation of China(No.10771139)the Ph.D. Program of Ministry of Education of China(No.200802700002)+4 种基金the Shanghai Leading Academic Discipline Project(No.S30405)the Innovation Program of Shanghai Municipal Education Commission(No.08ZZ70)the Foundation of Shanghai Talented Persons(No.049)the Leading Academic Discipline Project of Shanghai Normal University(No.DZL707)the Foundation of Shanghai Normal University(No.DYL200803)
文摘The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.
文摘In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Doctorate Foundation of Henan Polytechnic University, China (Grant No 648606). Acknowledgments The author is greatly indebted to the authors of the references for their original valuable work.
文摘Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.