This article introduces a FACTS coordinated control strategy with impedance/admittance measurement feedback. Then the effectiveness of this method is proved in mathematics with damp torque method. The control strategy...This article introduces a FACTS coordinated control strategy with impedance/admittance measurement feedback. Then the effectiveness of this method is proved in mathematics with damp torque method. The control strategy effect is verified in a single machine infinite bus system and a four machine power system with PSASP6.26 (Power System Analysis Software Package). This coordinated control strategy has practical significance to improve system dynamic stability and theoretical significance to improve system transient stability.展开更多
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance...Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.展开更多
An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dyna...An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dynamic control(HCVDC)system,including a high-level vehicle motion controller,a control allocation,an inverse tire model and a lower-level slip/slip angle controller,is proposed for the over-actuated vehicle system.The high-level sliding mode vehicle motion controller is designed to produce desired total forces and yaw moment,distributed to longitudinal and lateral forces of each tire by an advanced control allocation method.And the slip controller is designed to use a sliding mode control method to follow the desired slip ratios by manipulating the corresponding in-wheel motor torques.Evaluation of the overall system is accomplished by sine maneuver simulation.Simulation results confirm that the proposed control system can coordinate among the redundant and constrained actuators to achieve the vehicle dynamic control task and improve the vehicle stability.展开更多
As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated syst...As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated system operation. This paper analyzes the power grid side and unit side influence factors on the isolated power system. The dynamic models which are suitable for islanding operation are applied to simulate and analyze the stability and dynamic characteristics of the isolated power system under the conditions of different load disturbances and governor parameters. With considering the differences of frequency characteristics between the interconnected and isolated power system, the adjusting and optimization methods of under frequency load shedding are proposed to meet the frequency stability requirements simultaneously in the two cases. Not only proper control strategies of the power plant but the settings of their parameters are suggested to improve the operation stability of the isolated power system. To confirm the correctness and effectiveness of the method mentioned above, the isolated system operation test was conducted under the real power system condition, and the results show that the proposed coordinated control strategies can greatly improve stability of the isolated power system.展开更多
Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles(EVs),but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult ch...Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles(EVs),but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult challenge because gear shifting may cause discomfort to the occupants.To improve the swiftness of gear shifting,this paper proposes a coordinated shift control method based on the dynamic tooth alignment(DTA)algorithm for nonsynchronizer automated mechanical transmissions(NSAMTs)of EVs.After the speed difference between the sleeve(SL)and target dog gear is reduced to a certain value by speed synchronization,angle synchronization is adopted to synchronize the SL quickly to the target tooth slofs angular position predicted by the DTA.A two-speed planetary NS AMT is taken as an example to carry out comparative simulations and bench experiments.Results show that gear shifting duration and maximum jerk are reduced under the shift control with the proposed method,which proves the effectiveness of the proposed coordinated shift control method with DTA.展开更多
Many industrial processes such as heating furnaces have over damping dynamic characteristics. Based on an innovative impulse response model, a method of identification and control for the over damping plant is introdu...Many industrial processes such as heating furnaces have over damping dynamic characteristics. Based on an innovative impulse response model, a method of identification and control for the over damping plant is introduced in the paper. The number of parameters of the model is much less than conventional impulse response model. The model based on tuning procedure of numerical optimum PID controller parameters is presented. For an actual instance, a large scale airflow circulatory resistance furnace control system with cascades of time delays is developed. In the system, the optimum PID control is used in the inner loop. A nonlinear PI compensation control is applied in the outer loop. The coordinating control among each output is realized by a fuzzy control strategy. A process surveillance organization monitors running situation of system and tunes controller parameters.展开更多
In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel ada...In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.展开更多
在“碳达峰•碳中和”国家能源战略变革背景下,大规模可再生能源的加速并网加剧了电力系统对于快速调频资源需求的迫切性,如何充分发挥以电池储能系统(battery energy storage systems,BESS)为代表的新型快速资源在电网调频中的作用是解...在“碳达峰•碳中和”国家能源战略变革背景下,大规模可再生能源的加速并网加剧了电力系统对于快速调频资源需求的迫切性,如何充分发挥以电池储能系统(battery energy storage systems,BESS)为代表的新型快速资源在电网调频中的作用是解决该问题的关键。首先,为满足电网各类型调频资源在自动发电控制(automatic generation control,AGC)系统中的接入监视与分类决策需求,提出“域-群-机”三级控制模型架构;然后,从BESS的荷电状态(state of charge,SOC)主动管理出发,提出基于改进的动态调频容量(dynamic available AGC,DAA)的多元集群协同控制策略,以及引入SOC影响因子的多点BESS功率分配策略;最后,结合实际电网的持续扰动工况及模拟跳机扰动工况进行仿真分析,验证了文中所提控制策略的有效性。文中所提策略不但可以显著改善各单点BESS的SOC一致性,而且能够提升电网调频品质。展开更多
文摘This article introduces a FACTS coordinated control strategy with impedance/admittance measurement feedback. Then the effectiveness of this method is proved in mathematics with damp torque method. The control strategy effect is verified in a single machine infinite bus system and a four machine power system with PSASP6.26 (Power System Analysis Software Package). This coordinated control strategy has practical significance to improve system dynamic stability and theoretical significance to improve system transient stability.
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
基金supported by the Programme for Simulation Innovation(PSI)
文摘Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.
基金Supported by the Ministerial Level Advance Research Foundation(40402050168)
文摘An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dynamic control(HCVDC)system,including a high-level vehicle motion controller,a control allocation,an inverse tire model and a lower-level slip/slip angle controller,is proposed for the over-actuated vehicle system.The high-level sliding mode vehicle motion controller is designed to produce desired total forces and yaw moment,distributed to longitudinal and lateral forces of each tire by an advanced control allocation method.And the slip controller is designed to use a sliding mode control method to follow the desired slip ratios by manipulating the corresponding in-wheel motor torques.Evaluation of the overall system is accomplished by sine maneuver simulation.Simulation results confirm that the proposed control system can coordinate among the redundant and constrained actuators to achieve the vehicle dynamic control task and improve the vehicle stability.
文摘As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated system operation. This paper analyzes the power grid side and unit side influence factors on the isolated power system. The dynamic models which are suitable for islanding operation are applied to simulate and analyze the stability and dynamic characteristics of the isolated power system under the conditions of different load disturbances and governor parameters. With considering the differences of frequency characteristics between the interconnected and isolated power system, the adjusting and optimization methods of under frequency load shedding are proposed to meet the frequency stability requirements simultaneously in the two cases. Not only proper control strategies of the power plant but the settings of their parameters are suggested to improve the operation stability of the isolated power system. To confirm the correctness and effectiveness of the method mentioned above, the isolated system operation test was conducted under the real power system condition, and the results show that the proposed coordinated control strategies can greatly improve stability of the isolated power system.
基金This work was supported by the Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2015B010119002 and 2016B010132001).
文摘Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles(EVs),but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult challenge because gear shifting may cause discomfort to the occupants.To improve the swiftness of gear shifting,this paper proposes a coordinated shift control method based on the dynamic tooth alignment(DTA)algorithm for nonsynchronizer automated mechanical transmissions(NSAMTs)of EVs.After the speed difference between the sleeve(SL)and target dog gear is reduced to a certain value by speed synchronization,angle synchronization is adopted to synchronize the SL quickly to the target tooth slofs angular position predicted by the DTA.A two-speed planetary NS AMT is taken as an example to carry out comparative simulations and bench experiments.Results show that gear shifting duration and maximum jerk are reduced under the shift control with the proposed method,which proves the effectiveness of the proposed coordinated shift control method with DTA.
文摘Many industrial processes such as heating furnaces have over damping dynamic characteristics. Based on an innovative impulse response model, a method of identification and control for the over damping plant is introduced in the paper. The number of parameters of the model is much less than conventional impulse response model. The model based on tuning procedure of numerical optimum PID controller parameters is presented. For an actual instance, a large scale airflow circulatory resistance furnace control system with cascades of time delays is developed. In the system, the optimum PID control is used in the inner loop. A nonlinear PI compensation control is applied in the outer loop. The coordinating control among each output is realized by a fuzzy control strategy. A process surveillance organization monitors running situation of system and tunes controller parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.61304193&U1564208)National Key R&D Program of China(Grant No.2016YFB0100900)
文摘In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.
文摘在“碳达峰•碳中和”国家能源战略变革背景下,大规模可再生能源的加速并网加剧了电力系统对于快速调频资源需求的迫切性,如何充分发挥以电池储能系统(battery energy storage systems,BESS)为代表的新型快速资源在电网调频中的作用是解决该问题的关键。首先,为满足电网各类型调频资源在自动发电控制(automatic generation control,AGC)系统中的接入监视与分类决策需求,提出“域-群-机”三级控制模型架构;然后,从BESS的荷电状态(state of charge,SOC)主动管理出发,提出基于改进的动态调频容量(dynamic available AGC,DAA)的多元集群协同控制策略,以及引入SOC影响因子的多点BESS功率分配策略;最后,结合实际电网的持续扰动工况及模拟跳机扰动工况进行仿真分析,验证了文中所提控制策略的有效性。文中所提策略不但可以显著改善各单点BESS的SOC一致性,而且能够提升电网调频品质。