A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente...A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.展开更多
<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorith...<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div>展开更多
视觉语言预训练(VLP)模型通过对比学习等方法,在多模态任务上表现出了优异的性能。然而现有研究忽视了多视角描述带来的好处,以及语义和语法的重要性。为了解决这一问题,文中提出了多视角对比学习和语义增强多模态预训练(Multi-view lea...视觉语言预训练(VLP)模型通过对比学习等方法,在多模态任务上表现出了优异的性能。然而现有研究忽视了多视角描述带来的好处,以及语义和语法的重要性。为了解决这一问题,文中提出了多视角对比学习和语义增强多模态预训练(Multi-view learning and Semantic Enhancement for Multimodal pre-training,MulSE)模型。MulSE主要分为3个部分:1)在融合编码器模型中,引入带有生成器的多视角对比学习;2)提出了一种新的自监督视觉语言预训练任务——多模态文本重排序;3)增加并探寻最优MLM掩码比例,最大化利用视觉信息的能力。通过改进预训练任务,采取多种最优策略,并通过实验验证MulSE增强了模态内部和模态间的理解能力以及对文本语法和语义的理解能力。预训练仅用4×106的数据量,在图文检索任务中就达到了先前大型数据集的效果,且其在视觉问答和视觉蕴含任务上的评估效果优于先前的理解式VLP模型。展开更多
基金This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/01/11742.
文摘A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.
文摘<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div>
文摘视觉语言预训练(VLP)模型通过对比学习等方法,在多模态任务上表现出了优异的性能。然而现有研究忽视了多视角描述带来的好处,以及语义和语法的重要性。为了解决这一问题,文中提出了多视角对比学习和语义增强多模态预训练(Multi-view learning and Semantic Enhancement for Multimodal pre-training,MulSE)模型。MulSE主要分为3个部分:1)在融合编码器模型中,引入带有生成器的多视角对比学习;2)提出了一种新的自监督视觉语言预训练任务——多模态文本重排序;3)增加并探寻最优MLM掩码比例,最大化利用视觉信息的能力。通过改进预训练任务,采取多种最优策略,并通过实验验证MulSE增强了模态内部和模态间的理解能力以及对文本语法和语义的理解能力。预训练仅用4×106的数据量,在图文检索任务中就达到了先前大型数据集的效果,且其在视觉问答和视觉蕴含任务上的评估效果优于先前的理解式VLP模型。