As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperatur...In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.展开更多
The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and inter...The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor(ECWHQF).The results show that,when there is no ECWHQF,the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning,while when there are different numbers n of ECWHQF coupled to two dissipative cavities,by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities,the EBTVA can be protected perfectly and continuously.Our result provides an effective method for protecting entanglement resources of three-level system.展开更多
A novel multi-cavity Helmholtz muffler is proposed. The multi-cavity Helmholtz muffler is composed of steel structures and silicone membranes. With suitable construction, the Helmholtz muffler can be designed to exhib...A novel multi-cavity Helmholtz muffler is proposed. The multi-cavity Helmholtz muffler is composed of steel structures and silicone membranes. With suitable construction, the Helmholtz muffler can be designed to exhibit negative mass density in low frequency, and the muffling frequency can be adjusted when we change the internal structure of the cavity,which will be very attractive for noise control. In this paper, we investigate the influence of the membranes and the cavities on noise reduction characteristics with theoretical calculations and simulations. The results show that the numbers of membranes and the volumes of the cavities can have a great effect on the position of the muffling frequency. The number of cavities can have a great effect on the width of the muffling frequency(reduce the noise by 10 dB). With different combinations of the membranes and cavities, we can get different muffling frequencies, which can meet different muffling demands in practical applications and is more flexible than the traditional Helmholtz cavity.展开更多
This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he ...This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he Taguchi’s method and the abductive network are used. These methods are appli ed to create an efficient model with functional nodes for the considered problem . Once the cooling system parameters are developed, this network can be used to predict the warp for the die-casting die accurately. A simulated annealing (SA) optimization algorithm with a performance index is then applied to the neur al network for searching the optimal cooling system parameters, and obtain rathe r satisfactory result as compared with the corresponding finite element veri fication.展开更多
The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is r...The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.展开更多
Laboratory-scale carbon anodes were produced by a new method of high temperature mould pressing, and their physico-chemical properties were studied. The influence of mould pressing conditions and coal pitch addition o...Laboratory-scale carbon anodes were produced by a new method of high temperature mould pressing, and their physico-chemical properties were studied. The influence of mould pressing conditions and coal pitch addition on the bulk density, crushing strength, and oxidation resistance was analyzed. The mierostructure of carbon anodes was investigated by scanning electron microscopy (SEM), and the mechanism of producing carbon anodes by high-temperature mould pressing was analyzed. The results show that when the anodes are produced by high-temperature mould pressing, coal pitch can expand into the coke particles and fill the pores inside the particles, which is beneficial for improving the quality of prebaked anodes. The bulk density of carbon anodes is 1.64-1.66 g/cm3, which is 0.08-0.12 g/cm3 higher than that of industrial anodes, and the oxidation resistance of carbon anodes is also significantly improved.展开更多
Aim To develop blade mould CAD/CAM system of torque converter. Methods The mouldconsisted of four parts and an interactive computer program was developed to design a blade mould of torque converter based on UG at wor...Aim To develop blade mould CAD/CAM system of torque converter. Methods The mouldconsisted of four parts and an interactive computer program was developed to design a blade mould of torque converter based on UG at workstation. Results As compar- ed to manual modeling, it is showed in the application that this means not only improves the accuracy of blade shape and manufacture efficiency of converter, but also reduces costs. Conclusion It is proved that this CAD/CAM system is successful, and it opens up widely prospects for design and manufacture of the blade elementsand their moulds.展开更多
The solvent debinding of water soluble binder in powder injection moulding (MIM) was investigated systematically, including the effects of solvent types, temperature and the thickness of green parts on the solvent deb...The solvent debinding of water soluble binder in powder injection moulding (MIM) was investigated systematically, including the effects of solvent types, temperature and the thickness of green parts on the solvent debinding rate. After studying the debinding of a green part with a thickness of 4.26 mm, it was found that, the debinding rate of polyethylene glycol(PEG) in water and alcohol was high initially, and then decreased; however, it would increase with temperature increasing. At room temperature, the dissolution rate of PEG in water was higher than that in alcohol, but the latter would be much faster with temperature increasing because the debinding activation energy in alcohol was 51.44 kJ·mol -1 ·K -1 , much higher than 24.23 kJ·mol -1 ·K -1 in water. With a green part thickness larger than 4.26 mm, the debinding was controlled by diffusion; but with that smaller than 2.36 mm, the debinding was controlled by both dissolution and diffusion.展开更多
Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, ...Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, so that we will reach a point when even processes, that from technological point of view fulfill high requirements of the foundry industry, must be replaced by more ecologically-friendly solutions. Hence, technologies using synthetic resins as binding materials will be limited. This paper presents some predictable development tendencies of moulding and core sands. The increasing role of inorganic substances will be noticed, including silicate binders with significantly improved properties, such as improved knock-out property or higher reclamation strength. Other interesting solutions might also be moulding sands bonded by geo-polymers and phosphate binders or salts and also binders based on degradable biopolymers. These tendencies and the usefulness of these binders are put forward in this paper.展开更多
Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence pr...Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence process in a brittle material with two non-parallel overlapping flaws using a high-speed camera. The coalescence tensile crack and tensile wing cracks were the first cracks to occur from the preexisting flaws. The initiation stresses of the primary cracks at the two tips of each flaw were simultaneous and decreased with reduced flaw inclination angle. The following types of coalescence cracks were identified between the flaws: primary tensile coalescence crack, tensile crack linkage, shear crack linkage, mixed tensile-shear crack, and indirect crack coalescence. Coalescence through tensile linkage occurred mostly at pre-peak stress. In contrast, coalescence through shear or mixed tensile-shear cracks occurred at higher stress. Overall, this study indicates that the geometry of preexisting flaws affect crack initiation and coalescence behaviour.展开更多
In order to improve the mould filling ability, the method for production of thin-walled castings in the travelingmagnetic field was applied. The relationship between magnetic field density and input voltage as well as...In order to improve the mould filling ability, the method for production of thin-walled castings in the travelingmagnetic field was applied. The relationship between magnetic field density and input voltage as well as distancewas investigated, and the mould filling length of A357 melt has been studied. The electromagnetic forces appliedon the melt were also analyzed. The result shows that the mould-filling length of the melt increase rapidly with theincrease of magnetic flux density. The mould filling lengths in gypsum upper mould and magnetic material uppermould were compared from the standpoint of application. It demonstrated that the steel upper mould is superior togypsum mould.展开更多
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.
文摘In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.
基金the National Natural Science Foundation of China(Grant Nos.12064012 and 11374096).
文摘The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor(ECWHQF).The results show that,when there is no ECWHQF,the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning,while when there are different numbers n of ECWHQF coupled to two dissipative cavities,by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities,the EBTVA can be protected perfectly and continuously.Our result provides an effective method for protecting entanglement resources of three-level system.
基金Project supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX18 0249)
文摘A novel multi-cavity Helmholtz muffler is proposed. The multi-cavity Helmholtz muffler is composed of steel structures and silicone membranes. With suitable construction, the Helmholtz muffler can be designed to exhibit negative mass density in low frequency, and the muffling frequency can be adjusted when we change the internal structure of the cavity,which will be very attractive for noise control. In this paper, we investigate the influence of the membranes and the cavities on noise reduction characteristics with theoretical calculations and simulations. The results show that the numbers of membranes and the volumes of the cavities can have a great effect on the position of the muffling frequency. The number of cavities can have a great effect on the width of the muffling frequency(reduce the noise by 10 dB). With different combinations of the membranes and cavities, we can get different muffling frequencies, which can meet different muffling demands in practical applications and is more flexible than the traditional Helmholtz cavity.
文摘This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he Taguchi’s method and the abductive network are used. These methods are appli ed to create an efficient model with functional nodes for the considered problem . Once the cooling system parameters are developed, this network can be used to predict the warp for the die-casting die accurately. A simulated annealing (SA) optimization algorithm with a performance index is then applied to the neur al network for searching the optimal cooling system parameters, and obtain rathe r satisfactory result as compared with the corresponding finite element veri fication.
基金Project(2007CB613704)supported by the National Basic Research Program of China
文摘The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.
基金Project(090302012)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(50934005)supported by the National Natural Science Foundation of China
文摘Laboratory-scale carbon anodes were produced by a new method of high temperature mould pressing, and their physico-chemical properties were studied. The influence of mould pressing conditions and coal pitch addition on the bulk density, crushing strength, and oxidation resistance was analyzed. The mierostructure of carbon anodes was investigated by scanning electron microscopy (SEM), and the mechanism of producing carbon anodes by high-temperature mould pressing was analyzed. The results show that when the anodes are produced by high-temperature mould pressing, coal pitch can expand into the coke particles and fill the pores inside the particles, which is beneficial for improving the quality of prebaked anodes. The bulk density of carbon anodes is 1.64-1.66 g/cm3, which is 0.08-0.12 g/cm3 higher than that of industrial anodes, and the oxidation resistance of carbon anodes is also significantly improved.
文摘Aim To develop blade mould CAD/CAM system of torque converter. Methods The mouldconsisted of four parts and an interactive computer program was developed to design a blade mould of torque converter based on UG at workstation. Results As compar- ed to manual modeling, it is showed in the application that this means not only improves the accuracy of blade shape and manufacture efficiency of converter, but also reduces costs. Conclusion It is proved that this CAD/CAM system is successful, and it opens up widely prospects for design and manufacture of the blade elementsand their moulds.
文摘The solvent debinding of water soluble binder in powder injection moulding (MIM) was investigated systematically, including the effects of solvent types, temperature and the thickness of green parts on the solvent debinding rate. After studying the debinding of a green part with a thickness of 4.26 mm, it was found that, the debinding rate of polyethylene glycol(PEG) in water and alcohol was high initially, and then decreased; however, it would increase with temperature increasing. At room temperature, the dissolution rate of PEG in water was higher than that in alcohol, but the latter would be much faster with temperature increasing because the debinding activation energy in alcohol was 51.44 kJ·mol -1 ·K -1 , much higher than 24.23 kJ·mol -1 ·K -1 in water. With a green part thickness larger than 4.26 mm, the debinding was controlled by diffusion; but with that smaller than 2.36 mm, the debinding was controlled by both dissolution and diffusion.
文摘Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, so that we will reach a point when even processes, that from technological point of view fulfill high requirements of the foundry industry, must be replaced by more ecologically-friendly solutions. Hence, technologies using synthetic resins as binding materials will be limited. This paper presents some predictable development tendencies of moulding and core sands. The increasing role of inorganic substances will be noticed, including silicate binders with significantly improved properties, such as improved knock-out property or higher reclamation strength. Other interesting solutions might also be moulding sands bonded by geo-polymers and phosphate binders or salts and also binders based on degradable biopolymers. These tendencies and the usefulness of these binders are put forward in this paper.
基金supported by the National Natural Science Foundation of China (Grants 41572310, 41272351)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants XDB10030301, XDB10030304)support provided by the CAS-TWAS Presidential Fellowship, University of Chinese Academy of Sciences, Beijing, China
文摘Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence process in a brittle material with two non-parallel overlapping flaws using a high-speed camera. The coalescence tensile crack and tensile wing cracks were the first cracks to occur from the preexisting flaws. The initiation stresses of the primary cracks at the two tips of each flaw were simultaneous and decreased with reduced flaw inclination angle. The following types of coalescence cracks were identified between the flaws: primary tensile coalescence crack, tensile crack linkage, shear crack linkage, mixed tensile-shear crack, and indirect crack coalescence. Coalescence through tensile linkage occurred mostly at pre-peak stress. In contrast, coalescence through shear or mixed tensile-shear cracks occurred at higher stress. Overall, this study indicates that the geometry of preexisting flaws affect crack initiation and coalescence behaviour.
基金The author gratefully appreciate key project (59995440) of the National Natural Science Foundation of China and 973 Project (G2000067202-2) for the financial support.
文摘In order to improve the mould filling ability, the method for production of thin-walled castings in the travelingmagnetic field was applied. The relationship between magnetic field density and input voltage as well as distancewas investigated, and the mould filling length of A357 melt has been studied. The electromagnetic forces appliedon the melt were also analyzed. The result shows that the mould-filling length of the melt increase rapidly with theincrease of magnetic flux density. The mould filling lengths in gypsum upper mould and magnetic material uppermould were compared from the standpoint of application. It demonstrated that the steel upper mould is superior togypsum mould.