A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the...A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteri...By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect.展开更多
In the field of engine maintenance and assurance, the technology of unit condition detection through vibration analysis is relatively mature. More and more patents and technical products have been released, proving th...In the field of engine maintenance and assurance, the technology of unit condition detection through vibration analysis is relatively mature. More and more patents and technical products have been released, proving the practical value of the technology in mechanical vibration from the application level. In medical science, signals such as heart sounds and pulses are also vibration signals in nature, in order to expand the application of the technology and explore the value of the technology in medical applications. In order to extend the application of the technology and to explore the value of the technology in medical applications, the wavelet analysis technology was used to program the Labview2022 software to implement the corresponding analysis program for the analysis of the collected physiological signals. Finally, the wavelet transform-based analysis of the physiological signals was successfully implemented. It is demonstrated that the design concept can be achieved by applying this technique, which makes it valuable in the field of physiological signal detection and analysis.展开更多
We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key k...We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key kinematic variable the displacement at the top of a reference,a stand-alone pylon with a uniform cross-section and fixity at its base.Next,statistics are produced using a dimensionless displacement ratio defined between the‘parental’and the‘subsidiary’cases,the latter defined for the pylon(a)resting on compliant soil,(b)having an attached top mass,and(c)being non-uniform with height.Furthermore,two materials are examined,namely,steel and reinforced concrete(R/C).More specifically,this displacement ratio is independent of the excitation and plays the role of a transfer function between the base and the top of the pylon.Both horizontal and vertical motions are considered,and the equations of motion are solved in the frequency domain.The ensuing statistical analysis is conducted for the following parameter combinations:(a)pylon founded on soft,intermediate,and stiff soil;(b)low,intermediate,and high-mass ratios of the attached mass to the pylon′s mass;(c)a constant and quadratic degree of pylon tapering with height.Spearman correlation coefficients are calculated for all the above combinations to arrive at statistical results that establish validity bounds and quantify the degree of influence of each assumption on the pylon′s response.展开更多
A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibrat...A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.展开更多
Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved ...Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa...Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.展开更多
High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers...High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators.展开更多
The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position ...The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes.展开更多
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan...As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.展开更多
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i...The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective...Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.展开更多
In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The pape...In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.展开更多
Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational...Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the first- period blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.展开更多
A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of ...A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.展开更多
基金support from the Exploring Youth Project of Zhejiang Natural Science Foundation (Grant No.LQ24E080009)the Key Project of Natural Science Foundation of Zhejiang Province (Grant No.LXZ22E080001)the National Natural Science Foundation of China (Grant No.52108347).
文摘A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金Project supported by the National Natural Science Foundation of China (No. 12272087)。
文摘By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect.
文摘In the field of engine maintenance and assurance, the technology of unit condition detection through vibration analysis is relatively mature. More and more patents and technical products have been released, proving the practical value of the technology in mechanical vibration from the application level. In medical science, signals such as heart sounds and pulses are also vibration signals in nature, in order to expand the application of the technology and explore the value of the technology in medical applications. In order to extend the application of the technology and to explore the value of the technology in medical applications, the wavelet analysis technology was used to program the Labview2022 software to implement the corresponding analysis program for the analysis of the collected physiological signals. Finally, the wavelet transform-based analysis of the physiological signals was successfully implemented. It is demonstrated that the design concept can be achieved by applying this technique, which makes it valuable in the field of physiological signal detection and analysis.
基金support of the German Research Foundation (DFG) through Grant SM 281/20-1the Hellenic Foundation for Research and Innovation (HFRI) under the 3rd Call for PhD fellowships (Fellowship Number: 6522)
文摘We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key kinematic variable the displacement at the top of a reference,a stand-alone pylon with a uniform cross-section and fixity at its base.Next,statistics are produced using a dimensionless displacement ratio defined between the‘parental’and the‘subsidiary’cases,the latter defined for the pylon(a)resting on compliant soil,(b)having an attached top mass,and(c)being non-uniform with height.Furthermore,two materials are examined,namely,steel and reinforced concrete(R/C).More specifically,this displacement ratio is independent of the excitation and plays the role of a transfer function between the base and the top of the pylon.Both horizontal and vertical motions are considered,and the equations of motion are solved in the frequency domain.The ensuing statistical analysis is conducted for the following parameter combinations:(a)pylon founded on soft,intermediate,and stiff soil;(b)low,intermediate,and high-mass ratios of the attached mass to the pylon′s mass;(c)a constant and quadratic degree of pylon tapering with height.Spearman correlation coefficients are calculated for all the above combinations to arrive at statistical results that establish validity bounds and quantify the degree of influence of each assumption on the pylon′s response.
文摘A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.
基金support of this work by the National Natural Science Foundation of China(No.51405096)the Fundamental Research Funds for the Central Universities(HEUCF210710).
文摘Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFB3400100)National Natural Science Foundation of China (Grant Nos.52241103,U2241261,52022039)。
文摘Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.
基金Project supported by the National Natural Science Foundation of China(Nos.62188101,12272103,12022213)。
文摘High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators.
基金supported by the Tianjin Municipal Transportation Commission Project(No.2018-b2).
文摘The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes.
基金Supported by Fundamental Research Funds for the Central Universities of China (Grant No.2023JBZY020)Transformation Cultivation Program of Scientific and Technological Achievements from Beijing Jiaotong University of China (Grant No.M21ZZ200010)。
文摘As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.
基金Projects(52175373,52005516)supported by the National Natural Science Foundation of ChinaProject(2018YFA0702800)supported by the National Key Basic Research Program,ChinaProject(ZZYJKT2021-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China。
文摘The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
文摘Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.
文摘In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.
基金National Natural Science Funds for Distinguished Young Scholar under Grant No.51009086Hubei Key Laboratory of Roadway Bridge and Structure Engineering under Grant No.DQJJ201313Major State Basic Research Development Program of China(973 Program)under Grant No.2010CB732001
文摘Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the first- period blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.
基金supported by the Key Project of Science and Technology in an Action of Shanghai Scientific and Technological Innovation (No. 09231201600)the National Natural Science Foundation of China(No. 50823004)the Science and Technology Department of Sichuan Province
文摘A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.