Recent advances in wireless sensor networks and GPS have made constantly-evolving data a new type of data which bring a new challenge to traditional data processing methods. Data broadcasting is an effective means for...Recent advances in wireless sensor networks and GPS have made constantly-evolving data a new type of data which bring a new challenge to traditional data processing methods. Data broadcasting is an effective means for data dissemination in asymmetric communication networks, such as wireless networks. In this paper, definition of the mean uncertainty ratio of data is presented and a broadcasting scheme is proposed for constantly-evolving data dissemination. Simulation results show that the scheme can reduce the uncertainty of the broadcasted constantly-evolving data effectively at the cost of minor increase in data access time, in the case of no transmission error, transmission errors present, and multiple broadcast channels. As a result it benefits the qualities of the query results based on the data.展开更多
We consider the energy minimization problem for a two-cell broadcasting system, where the focus is devising energy efficient joint power control and scheduling algorithms. To improve the retransmission efficiency, lin...We consider the energy minimization problem for a two-cell broadcasting system, where the focus is devising energy efficient joint power control and scheduling algorithms. To improve the retransmission efficiency, linear network coding is applied to broadcast packets. Combined with network coding, an optimal algorithm is proposed, which is based on dynamic programming. To reduce computational complexity, two sub-optimal algorithms are also proposed for large networks. Simulation results show that the proposed schemes can reduce energy consumption up to 57% compared with the traditional Automatic Repeat-reQuest (ARQ).展开更多
Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed ...Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.展开更多
With the increasing popularity of wireless sensor network and GPS ( global positioning system), uncertain data as a new type of data brings a new challenge for the traditional data processing methods. Data broadcast...With the increasing popularity of wireless sensor network and GPS ( global positioning system), uncertain data as a new type of data brings a new challenge for the traditional data processing methods. Data broadcast is an effective means for data dissemination in mobile networks. In this paper, the def'mition of the mean uncertainty ratio of data is presented and a broadcasting scheme is proposed for uncertain data dissemination. Simulation results show that the scheme can reduce the uncertainty of the broadcasted uncertain data effectively at the cost of a minor increase in data access time, in the case of no transmission error and presence of transmission errors. As a result, lower uncertainty of data benefits the qualifies of the query results based on the data.展开更多
Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of re...Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of real-time database application in which both the transactions and data can have their timing constraints and priorities of different levels. In order to meet the requirement of real-time data disseminating and retrieving, a broadcast scheduling strategy HPF-ED F (Highest Priority First with Earlier Deadline and Frequency) is proposed under the BoD (Broadcast on Demand) model. Using the strategy, data items are scheduled according to their priority the transaction imposed on them or system set for them. The strategy also considers other characteristics of data items such as deadline and popularity of data. The extensive simulation experiments have been conducted to evaluate the performance of the proposed algorithm. Results show that it can achieve excellent performance compared with existing strategies.展开更多
This paper deals with design and analysis of user scheduling and power allocation for multi-antenna OFDM systems with DPC,ZF-DPC,ZF-BF and TDMA transmit strategies.We consider the general multi-user downlink schedulin...This paper deals with design and analysis of user scheduling and power allocation for multi-antenna OFDM systems with DPC,ZF-DPC,ZF-BF and TDMA transmit strategies.We consider the general multi-user downlink scheduling problem and power minimization with multi-user rate constraints.According to the channel state,it is shown that there is a power optimal policy which selects a subset of users in each scheduling interval.We present user selection algorithms for DPC,ZF-DPC,ZF-BF and TDMA for multi-antenna OFDM system in broadcast channels,and we also present the practical water-filling solution in this paper.By the selected users with the consideration of fairness,we derive the power optimization algorithm with multi-user rate constraints.We also analyze the power duality of uplink-downlink for the transmit strategies of DPC,ZF-DPC and ZF-BF.Simulation results show that the present user-scheduling algorithm and power minimization algorithm can achieve good power performance,and that the scheduling algorithm can guarantee fairness.展开更多
随着媒体传播方式的转变,广播电视中心正向融媒体转型,节目制作和发布越来越依赖互联网流媒体信号。传统广播信号调度系统已无法满足网际互连协议(Internet Protocol,IP)化制播的需求。基于此,设计基于软件定义网络(Software Defined Ne...随着媒体传播方式的转变,广播电视中心正向融媒体转型,节目制作和发布越来越依赖互联网流媒体信号。传统广播信号调度系统已无法满足网际互连协议(Internet Protocol,IP)化制播的需求。基于此,设计基于软件定义网络(Software Defined Network,SDN)的广播IP音频信号调度系统,分析其优势、架构及未来发展方向。展开更多
An improved delay priority resource scheduling algorithm with low packet loss rate for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.Real-time services in LTE...An improved delay priority resource scheduling algorithm with low packet loss rate for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.Real-time services in LTE systems require lower delay and packet loss rate.However,it is difficult to meet the QoS requirements of real-time services using the current MBMS resource scheduling algorithm.The proposed algorithm in this paper jointly considers user delay information and real-time channel conditions.By introducing the user delay information,the lower delay and fairness of users are guaranteed.Meanwhile,by considering the channel conditions of users,the packet loss rate can be effectively reduced,improving the system throughput.Simulation results show that under the premise of ensuring the delay requirements of real-time services,the proposed algorithm achieves a lower packet loss rate compared to other existing algorithms.Furthermore,it can achieve a good balance between system throughput and user fairness.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
A multiuser multiple input multiple output (MIMO) broadcast scheme was proposed through applying dirty paper coding (DPC) at the transmitter and linear equalization at the receiver. Assuming single data stream communi...A multiuser multiple input multiple output (MIMO) broadcast scheme was proposed through applying dirty paper coding (DPC) at the transmitter and linear equalization at the receiver. Assuming single data stream communication for each user, joint transmitter and linear receiver design were done to enhance the system performance. Furthermore, a multiuser scheduling algorithm was presented to exploit multiuser diversity when the number of the users is larger than that of transmit antennas. The proposed system achieves the sum rate close to the Sato bound and is superior to some of the existing schemes.展开更多
An improved spectrum-efficient and fair resource scheduling algorithm for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.By jointly considering the channel con...An improved spectrum-efficient and fair resource scheduling algorithm for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.By jointly considering the channel conditions of all the users,the average packet loss rate,and the fairness of users in the MBMS group,the transmission data rate of the MBMS group is first selected according to the link adaptation and the average packet loss rate of users.Then,the resource blocks are allocated to MBMS groups according to the scheduling priority.Such a resource scheduling algorithm further balances the system throughput and user fairness.Theoretical analysis and simulation results show that the proposed algorithm can achieve a good tradeoff between system throughput and user fairness in comparison with traditional scheduling algorithms.展开更多
基金supported by the National High-Technology Research and Development Program of China (Grant No.2007AA01Z309)the National Natural Science Foundation of China (Grant No.60203017)
文摘Recent advances in wireless sensor networks and GPS have made constantly-evolving data a new type of data which bring a new challenge to traditional data processing methods. Data broadcasting is an effective means for data dissemination in asymmetric communication networks, such as wireless networks. In this paper, definition of the mean uncertainty ratio of data is presented and a broadcasting scheme is proposed for constantly-evolving data dissemination. Simulation results show that the scheme can reduce the uncertainty of the broadcasted constantly-evolving data effectively at the cost of minor increase in data access time, in the case of no transmission error, transmission errors present, and multiple broadcast channels. As a result it benefits the qualities of the query results based on the data.
文摘We consider the energy minimization problem for a two-cell broadcasting system, where the focus is devising energy efficient joint power control and scheduling algorithms. To improve the retransmission efficiency, linear network coding is applied to broadcast packets. Combined with network coding, an optimal algorithm is proposed, which is based on dynamic programming. To reduce computational complexity, two sub-optimal algorithms are also proposed for large networks. Simulation results show that the proposed schemes can reduce energy consumption up to 57% compared with the traditional Automatic Repeat-reQuest (ARQ).
基金supported by the National Natural Science Foundation of China (60775047)Hunan Provincial Natural Science Foundation of China (07JJ6111)
文摘Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.
基金Initial Research Foundation of Shanghai Second Polytechnic University ( No.001943)National High Technology Research and Development Program of China(863 Program) (No.2007AA01Z309)
文摘With the increasing popularity of wireless sensor network and GPS ( global positioning system), uncertain data as a new type of data brings a new challenge for the traditional data processing methods. Data broadcast is an effective means for data dissemination in mobile networks. In this paper, the def'mition of the mean uncertainty ratio of data is presented and a broadcasting scheme is proposed for uncertain data dissemination. Simulation results show that the scheme can reduce the uncertainty of the broadcasted uncertain data effectively at the cost of a minor increase in data access time, in the case of no transmission error and presence of transmission errors. As a result, lower uncertainty of data benefits the qualifies of the query results based on the data.
基金the National Natural Science Foundation of China(60073045)
文摘Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of real-time database application in which both the transactions and data can have their timing constraints and priorities of different levels. In order to meet the requirement of real-time data disseminating and retrieving, a broadcast scheduling strategy HPF-ED F (Highest Priority First with Earlier Deadline and Frequency) is proposed under the BoD (Broadcast on Demand) model. Using the strategy, data items are scheduled according to their priority the transaction imposed on them or system set for them. The strategy also considers other characteristics of data items such as deadline and popularity of data. The extensive simulation experiments have been conducted to evaluate the performance of the proposed algorithm. Results show that it can achieve excellent performance compared with existing strategies.
基金Project supported by the National Natural Science Foundation of China (No. 60572157)the Key Laboratory of Universal Wireless Communication of the Ministry of Education,China (No. 2007103)
文摘This paper deals with design and analysis of user scheduling and power allocation for multi-antenna OFDM systems with DPC,ZF-DPC,ZF-BF and TDMA transmit strategies.We consider the general multi-user downlink scheduling problem and power minimization with multi-user rate constraints.According to the channel state,it is shown that there is a power optimal policy which selects a subset of users in each scheduling interval.We present user selection algorithms for DPC,ZF-DPC,ZF-BF and TDMA for multi-antenna OFDM system in broadcast channels,and we also present the practical water-filling solution in this paper.By the selected users with the consideration of fairness,we derive the power optimization algorithm with multi-user rate constraints.We also analyze the power duality of uplink-downlink for the transmit strategies of DPC,ZF-DPC and ZF-BF.Simulation results show that the present user-scheduling algorithm and power minimization algorithm can achieve good power performance,and that the scheduling algorithm can guarantee fairness.
文摘随着媒体传播方式的转变,广播电视中心正向融媒体转型,节目制作和发布越来越依赖互联网流媒体信号。传统广播信号调度系统已无法满足网际互连协议(Internet Protocol,IP)化制播的需求。基于此,设计基于软件定义网络(Software Defined Network,SDN)的广播IP音频信号调度系统,分析其优势、架构及未来发展方向。
基金Supported by the National Natural Science Foundation of China(61901027)。
文摘An improved delay priority resource scheduling algorithm with low packet loss rate for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.Real-time services in LTE systems require lower delay and packet loss rate.However,it is difficult to meet the QoS requirements of real-time services using the current MBMS resource scheduling algorithm.The proposed algorithm in this paper jointly considers user delay information and real-time channel conditions.By introducing the user delay information,the lower delay and fairness of users are guaranteed.Meanwhile,by considering the channel conditions of users,the packet loss rate can be effectively reduced,improving the system throughput.Simulation results show that under the premise of ensuring the delay requirements of real-time services,the proposed algorithm achieves a lower packet loss rate compared to other existing algorithms.Furthermore,it can achieve a good balance between system throughput and user fairness.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
基金The National Nature Science foundation of China (No. 60772100, 60372076)The Science and Technology Committee of Shanghai Municipality (No. 06DZ15013)
文摘A multiuser multiple input multiple output (MIMO) broadcast scheme was proposed through applying dirty paper coding (DPC) at the transmitter and linear equalization at the receiver. Assuming single data stream communication for each user, joint transmitter and linear receiver design were done to enhance the system performance. Furthermore, a multiuser scheduling algorithm was presented to exploit multiuser diversity when the number of the users is larger than that of transmit antennas. The proposed system achieves the sum rate close to the Sato bound and is superior to some of the existing schemes.
文摘An improved spectrum-efficient and fair resource scheduling algorithm for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.By jointly considering the channel conditions of all the users,the average packet loss rate,and the fairness of users in the MBMS group,the transmission data rate of the MBMS group is first selected according to the link adaptation and the average packet loss rate of users.Then,the resource blocks are allocated to MBMS groups according to the scheduling priority.Such a resource scheduling algorithm further balances the system throughput and user fairness.Theoretical analysis and simulation results show that the proposed algorithm can achieve a good tradeoff between system throughput and user fairness in comparison with traditional scheduling algorithms.