期刊文献+
共找到6,545篇文章
< 1 2 250 >
每页显示 20 50 100
Deep Structure Optimization for Incremental Hierarchical Fuzzy Systems Using Improved Differential Evolution Algorithm
1
作者 Yue Zhu Tao Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1139-1158,共20页
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a... The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts. 展开更多
关键词 Hierarchical fuzzy system automatic optimization differential evolution regression problem
下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
2
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(IPSO) fall detection
下载PDF
A multi-objective fuzzy optimization model for cropping structure and water resources and its method 被引量:3
3
作者 马建琴 陈守煜 邱林 《Hunan Agricultural Science & Technology Newsletter》 2004年第1期5-10,共6页
Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this... Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development. 展开更多
关键词 cropping structure multi objective fuzzy optimization fuzzy deciding weight agricultural water resources
下载PDF
Machine tool selection based on fuzzy evaluation and optimization of cutting parameters
4
作者 张保平 关世玺 +2 位作者 张博 王斌 田甜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期384-389,共6页
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,... The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined. 展开更多
关键词 fuzzy evaluation machine selection computer aided process planning(CAPP) parameter optimization
下载PDF
Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction 被引量:13
5
作者 LI Yulin LIU Li +1 位作者 LONG Teng DONG Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期928-939,共12页
High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization metho... High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models. 展开更多
关键词 global optimization metamodel-based optimization reduction of design space fuzzy clustering
下载PDF
Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm 被引量:13
6
作者 Anish Pandey Dayal R.Parhi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期47-58,共12页
This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. T... This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO(Wind Driven Optimization) algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-Ⅲ mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation. 展开更多
关键词 Singleton type-1 fuzzy Navigation Wind driven optimization Membership function Atmospheric motion
下载PDF
Forecasting of Software Reliability Using Neighborhood Fuzzy Particle Swarm Optimization Based Novel Neural Network 被引量:11
7
作者 Pratik Roy Ghanshaym Singha Mahapatra Kashi Nath Dey 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1365-1383,共19页
This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ... This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ANN is developed considering the fault generation phenomenon during software testing with the fault complexity of different levels. We demonstrate the proposed model considering three types of faults residing in the software. We propose a neighborhood based fuzzy PSO algorithm for competent learning of the proposed ANN using software failure data. Fitting and prediction performances of the neighborhood fuzzy PSO based proposed neural network model are compared with the standard PSO based proposed neural network model and existing ANN based software reliability models in the literature through three real software failure data sets. We also compare the performance of the proposed PSO algorithm with the standard PSO algorithm through learning of the proposed ANN. Statistical analysis shows that the neighborhood fuzzy PSO based proposed neural network model has comparatively better fitting and predictive ability than the standard PSO based proposed neural network model and other ANN based software reliability models. Faster release of software is achievable by applying the proposed PSO based neural network model during the testing period. 展开更多
关键词 Artificial neural network(ANN) fuzzy particle SWARM optimization(PSO) RELIABILITY prediction software RELIABILITY
下载PDF
Fuzzy Optimum Model of Semi-Structural Decision for Lectotype Optimization of Offshore Platforms 被引量:10
8
作者 陈守煜 伏广涛 +1 位作者 王建明 刘刚 《China Ocean Engineering》 SCIE EI 2001年第4期453-466,共14页
In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying altern... In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying alternative, consists of many qualitative and quantitative factors. Therefore, the selection is a problem of multicriteria and semi-structural decision-making. Different from traditional methods in semi-structural decision-making, a new framework and methodology is presented in this paper for evaluation of offshore platform alternatives, First, the criterion set is established for the evaluation of alternatives. Next, the approach is studied to construct the relative membership degree matrix, in which both qualitative and quantitative factors are consistent with the uniform calculating standard. And then a new weight-assessing method is developed for calculation of the weights based on the relative membership degree matrix. Finally, a multi-hierarchy fuzzy optimum model is adopted to select the satisfying offshore platform alternative. A case study shows that the new framework and methodology are scientific, reasonable and easy to use in practice. 展开更多
关键词 offshore platform lectotype optimization semi-structure relative membership degree matrix weightvector fuzzy optimum
下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:17
9
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
下载PDF
Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods 被引量:21
10
作者 Jiajun Wang Tufan Kumbasar 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期247-257,共11页
Interval type-2 fuzzy neural networks(IT2FNNs)can be seen as the hybridization of interval type-2 fuzzy systems(IT2FSs) and neural networks(NNs). Thus, they naturally inherit the merits of both IT2 FSs and NNs. Althou... Interval type-2 fuzzy neural networks(IT2FNNs)can be seen as the hybridization of interval type-2 fuzzy systems(IT2FSs) and neural networks(NNs). Thus, they naturally inherit the merits of both IT2 FSs and NNs. Although IT2 FNNs have more advantages in processing uncertain, incomplete, or imprecise information compared to their type-1 counterparts, a large number of parameters need to be tuned in the IT2 FNNs,which increases the difficulties of their design. In this paper,big bang-big crunch(BBBC) optimization and particle swarm optimization(PSO) are applied in the parameter optimization for Takagi-Sugeno-Kang(TSK) type IT2 FNNs. The employment of the BBBC and PSO strategies can eliminate the need of backpropagation computation. The computing problem is converted to a simple feed-forward IT2 FNNs learning. The adoption of the BBBC or the PSO will not only simplify the design of the IT2 FNNs, but will also increase identification accuracy when compared with present methods. The proposed optimization based strategies are tested with three types of interval type-2 fuzzy membership functions(IT2FMFs) and deployed on three typical identification models. Simulation results certify the effectiveness of the proposed parameter optimization methods for the IT2 FNNs. 展开更多
关键词 BIG bang-big crunch (BBBC) INTERVAL type-2 fuzzy NEURAL networks (IT2FNNs) parameter optimization particle SWARM optimization (PSO)
下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
11
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
下载PDF
A New Integrated Design Method Based on Fuzzy Matter-Element Optimization 被引量:5
12
作者 ZHAO Yan-wei 1, ZHANG Guo-xian 2 (1. College of Mechanical Engineering, Zhejiang University o f Technology, Hangzhou 310014, China 2. College of Mechanical & Electronic al Engineering, Shanghai University, Shanghai 200072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期136-,共1页
This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element ... This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper. 展开更多
关键词 multi-objective optimization fuzzy matter-elem ent genetic algorithms scheme design
下载PDF
APPLICATION OF FUZZY OPTIMIZATION MODEL IN ECOLOGICAL SECURITY PRE-WARNING 被引量:13
13
作者 WUKai-ya HUShu-heng SUNShi-qun 《Chinese Geographical Science》 SCIE CSCD 2005年第1期29-33,共5页
Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustaina... Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustainable development of social economy. Ecological environment pre-warning has become a hotspot for the modern environment science. This paper introduces the theories of ecological security pre-warning and tries to constitute a pre-warning model of ecological security. In terms of pressure-state-response model, the pre-warning guide line of ecological security is constructed while the pre-warning degree judging model of ecological security is established based on fuzzy optimization. As a case, the model is used to assess the present condition pre-warning of the ecological security of Anhui Province. The result is in correspondence with the real condition: the ecological security situations of 8 cities are dangerous and 9 cities are secure. The result shows that this model is scientific and effective for regional ecological security pre-warning. 展开更多
关键词 ecological security pre-warning fuzzy optimization pre-warning model Anhui Province
下载PDF
Multi Objective Multireservoir Optimization in Fuzzy Environment for River Sub Basin Development and Management 被引量:6
14
作者 D. G. REGULWAR P. Anand RAJ 《Journal of Water Resource and Protection》 2009年第4期271-280,共10页
In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for ... In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir. 展开更多
关键词 optimization Multi Objective Analysis Multireservoir GENETIC Algorithms fuzzy LOGIC RESERVOIR Operation
下载PDF
Time-Variant Reliability-Based Multi-Objective Fuzzy Design Optimization for Anti-Roll Torsion Bar of EMU 被引量:7
15
作者 Pengpeng Zhi Zhonglai Wang +1 位作者 Bingzhi Chen Ziqiang Sheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1001-1022,共22页
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ... Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case. 展开更多
关键词 Anti-roll torsion bar time-variant reliability fuzzy design optimization MULTI-OBJECTIVE
下载PDF
Multi-objective Fuzzy Optimization Algorithm for Separation-Recycle System 被引量:6
16
作者 孙力 樊希山 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期221-226,共6页
Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with... Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with the concept of relative importance degree (RID) is utilized to transfer multi-objective optimization (MO-O) model into a single-objective optimization (SO-O) framework. The treatment of process condensate in synthesisa mmonia plant is taken as example to illustrate the optimization procedure, and the satisfactory result demonstrates feasibility and effectiveness of the suggested method. 展开更多
关键词 MULTI-OBJECTIVE fuzzy optimization relative importance degree
下载PDF
Lectotype Optimization of Offshore Platforms by Use of Three-Scale Fuzzy Analytical Hierarchy Process 被引量:2
17
作者 王立成 宋玉普 封盛 《China Ocean Engineering》 SCIE EI 2001年第2期153-164,共12页
A Three-Scale Fuzzy Analytical Hierarchy Process (T-FAHP) is proposed by introducing the Three-Scale Analytical Hierarchy Process (T-AHP) and the trapezoid fuzzy number. A multi-objective optimization model based on t... A Three-Scale Fuzzy Analytical Hierarchy Process (T-FAHP) is proposed by introducing the Three-Scale Analytical Hierarchy Process (T-AHP) and the trapezoid fuzzy number. A multi-objective optimization model based on the T-FAHP is presented subsequently, in which many factors influencing the lectotype of offshore platform are taken into account synthetically, such as the original investment, the maintenance, cost, the ability of resisting fatigue and corrosion, the construction period, the threat to the environment, and so on. With this method, the experts can give the relatively precise ranking weight of each index and at the same time the requirement of consistence checking can be met, The result of a calculation example shows that the T-FAHP is practical. 展开更多
关键词 lectotype optimization offshore platform three-scale analysis fuzzy method hierarchy process trapezoid fuzzy number
下载PDF
Group Decision Making Based Fuzzy Pattern Recognition Model for Lectotype Optimization of Offshore Platforms 1 被引量:4
18
作者 王建明 陈守煜 +1 位作者 伏广涛 侯召成 《海洋工程:英文版》 2003年第1期1-10,共10页
This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for crit... This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model. 展开更多
关键词 offshore platform lectotype optimization group decision making fuzzy pattern recognition
下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:14
19
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
下载PDF
Multi-objectives fuzzy optimization model for ship form demonstration based on information entropy 被引量:4
20
作者 ZHANG Wei-ying LIN Yan +1 位作者 JI Zhuo-shang DENG Lin-yi 《Journal of Marine Science and Application》 2006年第1期12-16,共5页
Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy patter... Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form. 展开更多
关键词 ship form scheme information entropy MULTI-OBJECTIVE fuzzy optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部