期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement
1
作者 Meijing Li Runqing Huang Xianxian Qi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2283-2299,共17页
Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity... Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system. 展开更多
关键词 CNER multi-feature fusion BiLSTM CNN MHA
下载PDF
A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation
2
作者 Hao Bai Beiyuan Liu +3 位作者 Hongwen Liu Jupeng Zeng Jian Ouyang Yipeng Liu 《Energy Engineering》 EI 2024年第8期2191-2211,共21页
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o... Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified. 展开更多
关键词 Distribution grid insulation degradation initial insulation fault multi-feature indices multi-class SVM situational level situational awareness
下载PDF
A Review of Research on Handwritten Chinese Character Recognition with Multi-Feature Fusion
3
作者 Peng Deng Guiying Yang 《Journal of Electronic Research and Application》 2024年第5期109-117,共9页
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin... This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions. 展开更多
关键词 Chinese character recognition multi-feature fusion Machine learning
下载PDF
A Multi-Feature Learning Model with Enhanced Local Attention for Vehicle Re-Identification 被引量:19
4
作者 Wei Sun Xuan Chen +3 位作者 Xiaorui Zhang Guangzhao Dai Pengshuai Chang Xiaozheng He 《Computers, Materials & Continua》 SCIE EI 2021年第12期3549-3561,共13页
Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of int... Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of intelligent transportation system.Most existing vehicle re-identification models adopt the joint learning of global and local features.However,they directly use the extracted global features,resulting in insufficient feature expression.Moreover,local features are primarily obtained through advanced annotation and complex attention mechanisms,which require additional costs.To solve this issue,a multi-feature learning model with enhanced local attention for vehicle re-identification(MFELA)is proposed in this paper.The model consists of global and local branches.The global branch utilizes both middle and highlevel semantic features of ResNet50 to enhance the global representation capability.In addition,multi-scale pooling operations are used to obtain multiscale information.While the local branch utilizes the proposed Region Batch Dropblock(RBD),which encourages the model to learn discriminative features for different local regions and simultaneously drops corresponding same areas randomly in a batch during training to enhance the attention to local regions.Then features from both branches are combined to provide a more comprehensive and distinctive feature representation.Extensive experiments on VeRi-776 and VehicleID datasets prove that our method has excellent performance. 展开更多
关键词 Vehicle re-identification region batch dropblock multi-feature learning local attention
下载PDF
Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine 被引量:6
5
作者 周云龙 陈飞 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期832-840,共9页
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide... The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification. 展开更多
关键词 flow regime identification gas-liquid two-phase flow image processing multi-feature fusion support vector machine
下载PDF
Classification and Extraction of Urban Land-Use Information from High-Resolution Image Based on Object Multi-features 被引量:7
6
作者 孔春芳 徐凯 吴冲龙 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期151-157,共7页
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti... Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently. 展开更多
关键词 urban land-use multi-features OBJECT-ORIENTED SEGMENTATION CLASSIFICATION extraction.
下载PDF
A Multi-Feature Weighting Based K-Means Algorithm for MOOC Learner Classification 被引量:3
7
作者 Yuqing Yang Dequn Zhou Xiaojiang Yang 《Computers, Materials & Continua》 SCIE EI 2019年第5期625-633,共9页
Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms hav... Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups.However,most current algorithms mainly focus on the final grade of the learners,which may result in an improper classification.To overcome the shortages of the existing algorithms,a novel multi-feature weighting based K-means(MFWK-means)algorithm is proposed in this paper.Correlations between the widely used feature grade and other features are first investigated,and then the learners are classified based on their grades and weighted features with the proposed MFWK-means algorithm.Experimental results with the Canvas Network Person-Course(CNPC)dataset demonstrate the effectiveness of our method.Moreover,a comparison between the new MFWK-means and the traditional K-means clustering algorithm is implemented to show the superiority of the proposed method. 展开更多
关键词 multi-feature weighting learner classification MOOC CLUSTERING
下载PDF
The detection method of low-rate DoS attack based on multi-feature fusion 被引量:3
8
作者 Liang Liu Huaiyuan Wang +1 位作者 Zhijun Wu Meng Yue 《Digital Communications and Networks》 SCIE 2020年第4期504-513,共10页
As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics ... As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms. 展开更多
关键词 Low-rate denial of service attacks Attack features KNN classifier multi-feature fusion
下载PDF
Smoke root detection from video sequences based on multi-feature fusion 被引量:1
9
作者 Liming Lou Feng Chen +1 位作者 Pengle Cheng Ying Huang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第6期1841-1856,共16页
Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection ... Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods. 展开更多
关键词 Smoke detection multi-feature fusion Search strategy ViBe Choquet
下载PDF
Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation 被引量:1
10
作者 Weiwei Cai Yaping Song +2 位作者 Huan Duan Zhenwei Xia Zhanguo Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1539-1555,共17页
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by... In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared. 展开更多
关键词 Logistics pallet segmentation image segmentation multi-feature fusion multiscale network bidirectional attention mechanism HSV neural networks deep learning
下载PDF
Multi-feature integration kernel particle filtering target tracking 被引量:1
11
作者 初红霞 张积宾 王科俊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第6期29-34,共6页
In light of degradation of particle filtering and robust weakness in the utilization of single feature tracking,this paper presents a kernel particle filtering tracking method based on multi-feature integration.In thi... In light of degradation of particle filtering and robust weakness in the utilization of single feature tracking,this paper presents a kernel particle filtering tracking method based on multi-feature integration.In this paper,a new weight upgrading method is given out during kernel particle filtering at first,and then robust tracking is realized by integrating color and texture features under the framework of kernel particle filtering.Space histogram and integral histogram is adopted to calculate color and texture features respectively.These two calculation methods effectively overcome their own defectiveness,and meanwhile,improve the real timing for particle filtering.This algorithm has also improved sampling effectiveness,resolved redundant calculation for particle filtering and degradation of particles.Finally,the experiment for target tracking is realized by using the method under complicated background and shelter.Experiment results show that the method can reliably and accurately track target and deal with target sheltering situation properly. 展开更多
关键词 kernel particle filtering multi-feature integration spatiograms integral histogrom TRACKING
下载PDF
Hierarchical particle filter tracking algorithm based on multi-feature fusion 被引量:3
12
作者 Minggang Gan Yulong Cheng +1 位作者 Yanan Wang Jie Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期51-62,共12页
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ... A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments. 展开更多
关键词 particle filter corner matching multi-feature fusion local binary patterns(LBP) backstepping.
下载PDF
A Multi-feature Fusion Apple Classification Method Based on Image Processing and Improved SVM 被引量:1
13
作者 Haibo LIN Yuandong LU +1 位作者 Rongcheng DING Yufeng XIU 《Agricultural Biotechnology》 CAS 2022年第5期84-91,共8页
In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, ... In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, including image preprocessing, background segmentation, feature extraction and multi-feature fusion classification with improved SVM. Firstly, the homomorphic filtering algorithm was used to improve the quality of apple images. Secondly, the images were converted to HLS space. The background was segmented by the QTSU algorithm. Morphological processing was employed to remove fruit stem and surface defect areas. And apple contours were extracted with the Canny algorithm. Then, apples’ size, shape, color, defect and texture features were extracted. Finally, the cross verification method was used to optimize the penalty factor in SVM. A multi-feature fusion classification model was established. And the weight of each index was calculated by Fisher. In this study, 146 apple samples were selected for training and 61 apple samples were selected for testing. The test results showed that the accuracy of the classification method proposed in this paper was 96.72%, which can provide a reference for apple automatic classification. 展开更多
关键词 Apple classification Image processing Improved SVM multi-feature fusion
下载PDF
Medical image fusion based on pulse coupled neural networks and multi-feature fuzzy clustering 被引量:1
14
作者 Xiaoqing Luo Xiaojun Wu 《Journal of Biomedical Science and Engineering》 2012年第12期878-883,共6页
Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and g... Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and get more reliable results, a novel medical image fusion algorithm based on pulse coupled neural networks (PCNN) and multi-feature fuzzy clustering is proposed, which makes use of the multi-feature of image and combines the advantages of the local entropy and variance of local entropy based PCNN. The results of experiments indicate that the proposed image fusion method can better preserve the image details and robustness and significantly improve the image visual effect than the other fusion methods with less information distortion. 展开更多
关键词 PCNN multi-feature MEDICAL IMAGE IMAGE FUSION LOCAL ENTROPY
下载PDF
Research on Facial Fatigue Detection of Drivers with Multi-feature Fusion 被引量:1
15
作者 YE Yuxuan ZHOU Xianchun +2 位作者 WANG Wenyan YANG Chuanbin ZOU Qingyu 《Instrumentation》 2023年第1期23-31,共9页
In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face dete... In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms. 展开更多
关键词 HOG Face Posture Detection Deformable Convolution multi-feature Fusion Fatigue Detection
下载PDF
SA-Model:Multi-Feature Fusion Poetic Sentiment Analysis Based on a Hybrid Word Vector Model
16
作者 Lingli Zhang Yadong Wu +5 位作者 Qikai Chu Pan Li Guijuan Wang Weihan Zhang Yu Qiu Yi Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期631-645,共15页
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It... Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis. 展开更多
关键词 Sentiment analysis Chinese classical poetry natural language processing BERT-wwm-ext ERNIE multi-feature fusion
下载PDF
Multi-Feature Fusion Based Relative Pose Adaptive Estimation for On-Orbit Servicing of Non-Cooperative Spacecraft
17
作者 Yunhua Wu Nan Yang +1 位作者 Zhiming Chen Bing Hua 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第6期19-30,共12页
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s... On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions. 展开更多
关键词 on-orbit servicing non-cooperative spacecraft multi-feature fusion fuzzy adaptive filter dual quaternion
下载PDF
Multi-Features Disease Analysis Based Smart Diagnosis for COVID-19
18
作者 Sirisati Ranga Swamy SPhani Praveen +2 位作者 Shakeel Ahmed Parvathaneni Naga Srinivasu Abdulaziz Alhumam 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期869-886,共18页
Coronavirus 2019(COVID-19)is the current global buzzword,putting the world at risk.The pandemic’s exponential expansion of infected COVID-19 patients has challenged the medical field’s resources,which are already fe... Coronavirus 2019(COVID-19)is the current global buzzword,putting the world at risk.The pandemic’s exponential expansion of infected COVID-19 patients has challenged the medical field’s resources,which are already few.Even established nations would not be in a perfect position to manage this epidemic correctly,leaving emerging countries and countries that have not yet begun to grow to address the problem.These problems can be solved by using machine learning models in a realistic way,such as by using computer-aided images during medical examinations.These models help predict the effects of the disease outbreak and help detect the effects in the coming days.In this paper,Multi-Features Decease Analysis(MFDA)is used with different ensemble classifiers to diagnose the disease’s impact with the help of Computed Tomography(CT)scan images.There are various features associated with chest CT images,which help know the possibility of an individual being affected and how COVID-19 will affect the persons suffering from pneumonia.The current study attempts to increase the precision of the diagnosis model by evaluating various feature sets and choosing the best combination for better results.The model’s performance is assessed using Receiver Operating Characteristic(ROC)curve,the Root Mean Square Error(RMSE),and the Confusion Matrix.It is observed from the resultant outcome that the performance of the proposed model has exhibited better efficient. 展开更多
关键词 Chest CT COVID-19 CLASSIFICATION ROC curves multi-feature disease analysis
下载PDF
Multi-Feature Fusion Book Recommendation Model Based on Deep Neural Network
19
作者 Zhaomin Liang Tingting Liang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期205-219,共15页
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ... The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation. 展开更多
关键词 Book recommendation deep learning neural network multi-feature fusion personalized prediction
下载PDF
A classification method of building structures based on multi-feature fusion of UAV remote sensing images
20
作者 Haoguo Du Yanbo Cao +6 位作者 Fanghao Zhang Jiangli Lv Shurong Deng Yongkun Lu Shifang He Yuanshuo Zhang Qinkun Yu 《Earthquake Research Advances》 CSCD 2021年第4期38-47,共10页
In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi... In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images. 展开更多
关键词 Remote sensing image Building structure classification multi-feature fusion Object-oriented classification method Texture feature classification method DSM and DEM elevation classification method RGB threshold classification method
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部