期刊文献+
共找到102,318篇文章
< 1 2 250 >
每页显示 20 50 100
Characterization and quantification of multi-field coupling in lithium-ion batteries under mechanical constraints
1
作者 Xue Cai Caiping Zhang +3 位作者 Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期364-379,I0009,共17页
The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coup... The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management. 展开更多
关键词 Lithium-ion battery Muti-field coupling Mechanical constraints Interaction mechanisms Quantitative analysis
下载PDF
Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine 被引量:6
2
作者 Zhibin Lin Boyang Zhang Jiaqi Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期311-330,共20页
Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aq... Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aquifer occurs widely throughout northern China.A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3,2013.In order to analyze the effect of the KCC influence zone’s(KCCIZ)width and the entry driving distance of the water inrush through the fractured channels of the SKCC,the stress,seepage,and impact dynamics coupling equations were used tomodel the seepage rule,and a numerical FLAC3D model was created to determine the plastic zones,the vertical displacement development of the rockmass surrounding the entry driving working face(EDWF),and the seepage vector and water inflow development of the seepage field.The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated.The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving,which leads to the aquifer connecting with the fractured zones of the entry floor.Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving.When the entry driving exceeds about 10 m from the water inrush point,the stress release rate reaches about 100%,and a water inrush disaster occurs. 展开更多
关键词 Karst collapse column multi-field coupling seepage mutation water-inrush
下载PDF
Numerical analysis of stability for mined-out area in multi-field coupling 被引量:5
3
作者 罗周全 谢承煜 +3 位作者 周吉明 贾楠 刘晓明 徐海 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期669-675,共7页
There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze... There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area. 展开更多
关键词 mined-out area measured actually multi-field coupling stress-seepage-disturbance stability for mined-out area
下载PDF
A generalized multi-field coupling approach and its application to stability and deformation control of a high slope 被引量:5
4
作者 Chuangbing Zhou Yifeng Chen +1 位作者 Qinghui Jiang Wenbo Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期193-206,共14页
Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engine... Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engineering disturbances are important factors that would alter the natural evolutionary processes or change the multi-field interactions in the rock masses from their initial equilibrium states. The concept of generalized multi-field couplings was proposed by placing particular emphasis on the role of engineering disturbances in traditional multi-field couplings in rock masses. A mathematical model was then developed, in which the effects of engineering disturbances on the coupling-processes were described with changes in boundary conditions and evolutions in thermo-hydro-mechanical (THM) properties of the rocks. A parameter, d, which is similar to damage variables but has a broader physical meaning, was conceptually introduced to represent the degree of engineering disturbances and the couplings among the material properties. The effects of blasting excavation, bolting and grouting in rock engineering were illustrated with various field observations or theoretical results, on which the degree of disturbances and the variations in elastic moduli and permeabilities were particularly focused. The influences of excavation and groundwater drainage on the seepage flow and stability of the slopes were demonstrated with numerical simulations. The proposed approach was further employed to investigate the coupled hydro-mechanical responses of a high rock slope to excavation, bolting and impounding of the reservoir in the dam left abutment of Jinping I hydropower station. The impacts of engineering disturbances on the deformation and stability of the slope during construction and operation were demonstrated. 展开更多
关键词 generalized multi-field couplings engineering disturbance slope stability deformation control
下载PDF
MULTI-FIELD COUPLING BEHAVIOR OF SIMPLY-SUPPORTED CONDUCTIVE PLATE UNDER THE CONDITION OF A TRANSVERSE STRONG IMPULSIVE MAGNETIC FIELD 被引量:3
5
作者 Zhu Linli Zhang Jianping Zheng Xiaojing 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第3期203-211,共9页
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami... In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field. 展开更多
关键词 multi-field coupling conductive thin plate impulsive magnetic field eddy current dynamic buckling magnetic volume forces
下载PDF
Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate 被引量:1
6
作者 Xueqian FANG Qilin HE +1 位作者 Hongwei MA Changsong ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1351-1366,共16页
Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechan... Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail. 展开更多
关键词 sandwiched piezoelectric semiconductor(PS)plate functionally-graded layer multi-field coupling free vibration Hamilton's principle
下载PDF
Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
7
作者 许之磊 高国强 +6 位作者 钱鹏宇 肖嵩 魏文赋 杨泽锋 董克亮 马亚光 吴广宁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期493-503,共11页
The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal ... The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas. 展开更多
关键词 pantograph-catenary arc low pressure multi-field stress coupling model arc column drift
下载PDF
Multi-field Coupling Simulation of Impact of Temperature and Density of Heat Injection Well on Carbon Budget during Hydrate Exploitation in Qilian Mountain Permafrost Region
8
作者 Zhenhua Han Ruirui Li +2 位作者 Luqing Zhang Jian Zhou Song Wang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期1934-1943,共10页
Permafrost regions of Qilian Mountains in China are rich in gas hydrate resources.Once greenhouse gases in deep frozen layer are released into the atmosphere during hydrate mining,a series of negative consequences occ... Permafrost regions of Qilian Mountains in China are rich in gas hydrate resources.Once greenhouse gases in deep frozen layer are released into the atmosphere during hydrate mining,a series of negative consequences occur.This study aims to evaluate the impact of hydrate thermal exploitation on regional permafrost and carbon budgets based on a multi-physical field coupling simulation.The results indicate that the permeability of the frozen soil is anisotropic,and the low permeability frozen layer can seal the methane gas in the natural state.Heat injection mining of hydrates causes the continuous melting of permafrost and the escape of methane gas,which transforms the regional permafrost from a carbon sink to a carbon source.A higher injection temperature concentrates the heat and causes uneven melting of the upper frozen layer,which provides a dominant channel for methane gas and results in increased methane emissions.However,dense heat injection wells cause more uniform melting of the lower permafrost layer,and the melting zone does not extend to the upper low permeability formation,which cannot provide advantageous channels for methane gas.Therefore,a reasonable and dense number of heat injection wells can reduce the risk of greenhouse gas emissions during hydrate exploitation. 展开更多
关键词 PERMAFROST gas hydrates carbon budget methane emissions greenhouse gases environmental effects multi-field coupling SIMULATION
原文传递
In-situ Ultrafast Transmission Electron Microscopy:Advancing Ultrafast Dynamics Research under Multi-Field Coupling at the Nanoscale
9
作者 Shaozheng Ji Lenan Chen Xuewen Fu 《Chinese Physics Letters》 2025年第1期99-101,共3页
In recent years,the development of ultrafast transmission electron microscopy(UTEM)has created new opportunities for studying dynamic processes at the nanoscale with unprecedented temporal resolution.~([1–3])The sign... In recent years,the development of ultrafast transmission electron microscopy(UTEM)has created new opportunities for studying dynamic processes at the nanoscale with unprecedented temporal resolution.~([1–3])The significant advances in femtosecond and even attosecond temporal resolution are achieved through the integration of the pump-probe principle with transmission electron microscopy(TEM). 展开更多
关键词 resolution. Electron coupling
下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
10
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
下载PDF
Analysis of multi-objective optimisation method for main insulation structure configuration scheme of valve-side winding of ultra-high voltage converter transformer considering multi-field coupling 被引量:1
11
作者 Lijun Yang Zhidong Cheng +1 位作者 Li Cheng Ruijin Liao 《High Voltage》 SCIE EI CSCD 2024年第2期296-308,共13页
Because DC conductivities of oil-paper materials can be easily affected by electric field and temperature,the electrical properties under electro-thermal coupling of oil-paper materials should be considered when optim... Because DC conductivities of oil-paper materials can be easily affected by electric field and temperature,the electrical properties under electro-thermal coupling of oil-paper materials should be considered when optimising the insulation structure of valve-side winding of the converter transformer.Based on the finite element multi-physical field coupling simulation,the multi-objective optimisation of main insulation structure of valve-side winding is carried out.In view of the high time consuming of multi-physical field calculation and the actual needs of an insulation structure optimisation,the Kriging method and technique for order preference by similarity to the ideal solution(TOPSIS)method are introduced,and combines them with NSGA-II to obtain a joint algorithm that can be used for the optimisation of insulation structure of the converter transformer.By using the joint algorithm of multi-objective optimisation,the insulation structure configuration scheme of valve-side winding is optimised.It can be seen from the experiment result that,on the one hand,the joint algorithm adopted can obtain the insulation structure configuration scheme that meets the design requirements.On the other hand,when facing the configuration scheme optimisation under multi-field coupling,the computational time required by this method is only 0.15%of that required by original genetic algorithm. 展开更多
关键词 CONVERTER INSULATION coupling
原文传递
Study on the Fluid-Solid Coupling Seepage of the Deep Tight Reservoir Based on 3D Digital Core Modeling
12
作者 Haijun Yang Zhenzhong Cai +5 位作者 Hui Zhang Chong Sun Jing Li Xiaoyu Meng Chen Liu Chengqiang Yang 《Energy Engineering》 2025年第2期537-560,共24页
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an... Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability. 展开更多
关键词 Digital core fluid-solid coupling pore structure microscopic seepage
下载PDF
Omnidirectional simulation analysis of thermomechanical coupling mechanism in inertia friction welding of Ni-based superalloy
13
作者 Chang-an LI Guoliang QIN Hao WANG 《Chinese Journal of Aeronautics》 2025年第1期202-216,共15页
The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to si... The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism of the friction interface.The numerical model successfully simulated the deceleration,deformation processes,and peak torsional moments in IFW and captured the evolution of temperature,contact pressure,and stress.The simulated results were validated through measured thermal history,optical macrography,and axial shortening.The results indicated that interfacial friction heat was the primary heat source,and plastic deformation energy only accounted for 4%of the total.The increase in initial rotational speed and friction pressure elevated the peak temperature,reaching a maximum of 1525.5K at an initial rotational speed of 2000 r/min and friction pressure of 400 MPa.The interface heat generation could form an axial temperature gradient exceeding 320K/mm.The radial inhomogeneities of heat generation and temperature were manifested in a concentric ring distribution with maximum heat flux and temperature ranging from 2/5 to 2/3 radius.The radial inhomogeneities were caused by increasing linear velocity along the radius and an opposite distribution of contact pressure,which could reach 1.7 times the set pressure at the center.The circumferential inhomogeneity of thermomechanical distribution during rotary friction welding was revealed for the first time,benefiting from the 3D model.The deflection and transformation of distribution in contact pressure and Mises stress were indicators of plastic deformation and transition of quasi-steady state welding.The critical Mises stress was 0.5 times the friction pressure in this study.The presented modeling provides a reliable insight into the thermo-mechanical coupling mechanism of IFW and lays a solid foundation for predicting the microstructures and mechanical properties of inertia friction welded joints. 展开更多
关键词 Inertia friction welding Thermo-mechanical coupling INHOMOGENEITY Numerical simulation Ni-based superalloy
原文传递
Optimized reinforcement of granite residual soil using a cement and alkaline solution: A coupling effect
14
作者 Bingxiang Yuan Jingkang Liang +5 位作者 Baifa Zhang Weijie Chen Xianlun Huang Qingyu Huang Yun Li Peng Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期509-523,共15页
Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re... Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance. 展开更多
关键词 Granite residue soil(GRS) REINFORCEMENT coupling effect Alkali activation Mechanical properties
下载PDF
Deformation mechanism and NPR anchor cable truss coupling support in tunnel through fault fracture zone
15
作者 HUO Shusen TAO Zhigang +2 位作者 HE Manchao WANG Fengnian XU Chuang 《Journal of Mountain Science》 2025年第1期354-374,共21页
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m... To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions. 展开更多
关键词 Fault fracture zone Large deformation Nuclear magnetic resonance NPR anchor cable truss support coupled simulation
下载PDF
Analysis of nonlinear multi-field coupling responses of piezoelectric semiconductor rods via machine learning
16
作者 Chuwei Wu Zhengguang Xiao +1 位作者 Yuting Guo Chunli Zhang 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期62-74,共13页
Piezoelectric semiconductors(PSs)have widespread applications in semiconductor devices due to the coexistence of piezoelec-tricity and semiconducting properties.It is very important to conduct a theoretical analysis o... Piezoelectric semiconductors(PSs)have widespread applications in semiconductor devices due to the coexistence of piezoelec-tricity and semiconducting properties.It is very important to conduct a theoretical analysis of PS structures.However,the present of nonlinearity in the partial differential equations(PDEs)that describe those multi-feld coupling mechanical behaviors of PSs poses a significant mathematical challenge when studying these PS structures.In this paper,we present a novel approach based on machine learning for solving multi-field coupling problems in PS structures.A physics-informed neural networks(PINNs)is constructed for predicting the multi-field coupling behaviors of PS rods with extensional deforma-tion.By utilizing the proposed PINNs,we evaluate the multi-field coupling responses of a ZnO rod under static and dynamic axial forces.Numerical results demonstrate that the proposed PINNs exhibit high accuracy in solving both static and dynamic problems associated with Ps structures.It provides an effective approach to predicting the nonlinear multi-feld coupling phe-nomena in PS structures. 展开更多
关键词 PS rod multi-feld coupling response machine learning PINNs
原文传递
Impact of Climate Change on Crop-cropland Coupling Relationship:A Case Study of the Loess Plateau in China
17
作者 LI Shunke LIU Yansui +1 位作者 SHAO Yajing WANG Xiaochen 《Chinese Geographical Science》 2025年第1期92-110,共19页
Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural... Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural sustainability and food security.Taking the Loess Plateau(LP),China as an example,this study used a coupling coordination degree model and spatial autocorrelation analysis to portray the spatial and temporal features of crop-cropland coupling relationship from 2000 to 2020 and explored the impact law of climate change through geographically and temporally weighted regression(GTWR).The results were as follows:1)the crop-cropland coupling coordination degree of the LP showed a gradual upward trend from 2000 to 2020,forming a spatial pattern with lower values in the central region and higher values in the surrounding areas.2)There was a positive correlation in the spatial distribution of cropcropland coupling coordination degree in the LP from 2000 to 2020,and the high value-low value(H-L)and low value-low value(L-L)agglomerations continued to expand eastward,while the spatial and temporal evolution of the high value-high value(H-H)and low value-high value(L-H)agglomerations was not obvious.3)The impacts of climatic elements on crop-cropland coupling coordination degree in the LP showed strong heterogeneity in time scales.The inhibitory impacts of summer days(SU)and frost days(FD)accounted for a higher proportion,while the annual average temperature(TEM)had both promoting and inhibiting impacts.The impacts proportion and intensity of extreme heavy precipitation day(R25),continuous drought days(CDD),and annual precipitation(PRE)all experienced significant changes.4)In space,the impacts of SU and FD on the crop-cropland coupling coordination degree varied with latitude and altitude.The adaptability of the LP to R25 gradually strengthened,and the extensions of CDD and increase of PRE led to the increasing inhibition beyond the eastern region of LP,and TEM showed a promoting impact in the Fenwei Plain.As an important grainproducing area in China,the LP should actively deal with the impacts of climate change on the crop-cropland coupling relationship,vigorously safeguard food security,and promote sustainable agricultural development. 展开更多
关键词 climate change crop-cropland coupling relationship geographically and temporally weighted regression(GTWR) extreme weather events Loess Plateau China
下载PDF
Design of a conduction-cooled 4 T superconducting racetrack for a multi-field coupling measurement system
18
作者 陈玉泉 马力祯 +4 位作者 吴巍 关明智 吴北民 梅恩铭 辛灿杰 《Chinese Physics C》 SCIE CAS CSCD 2015年第12期109-112,共4页
A conduction-cooled superconducting magnet producing a transverse field of 4 T has been designed for a new generation multi-field coupling measurement system, which will be used to study the mechanical behavior of sup... A conduction-cooled superconducting magnet producing a transverse field of 4 T has been designed for a new generation multi-field coupling measurement system, which will be used to study the mechanical behavior of superconducting samples at cryogenic temperatures and intense magnetic fields. A compact cryostat with a two-stage GM cryocooler is designed and manufactured for the superconducting magnet. The magnet is composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational former and two Bi2Sr2CaCu20~ superconducting current leads. The two coils are connected in series and can be powered with a single power supply. In order to support the high stress and attain uniform thermal distribution in the superconducting magnet, a detailed finite element (FE) analysis has been performed. The results indicate that in the operating status the designed magnet system can sufficiently bear the electromagnetic forces and has a uniform temperature distribution. 展开更多
关键词 CONDUCTION-COOLED superconducting magnet multi-field coupling measurement system mechanical and thermal analysis
原文传递
Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells 被引量:2
19
作者 Ruikun Cao Kexuan Sun +8 位作者 Chang Liu Yuhong Mao Wei Guo Ping Ouyang Yuanyuan Meng Ruijia Tian Lisha Xie Xujie Lü Ziyi Ge 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期325-340,共16页
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker... This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit. 展开更多
关键词 Electron-phonon coupling A-site cation engineering Non-radiative recombination
下载PDF
Influence of water coupling coefficient on the blasting effect of red sandstone specimens 被引量:2
20
作者 Yang Li Renshu Yang +1 位作者 Yanbing Wang Dairui Fu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期148-166,共19页
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i... This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent. 展开更多
关键词 Water coupling coefficient Radial uncoupled charge Numerical simulation Fractal dimension
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部