To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
The end-effector of the large space manipulator is employed to assist the manipulator in handling and manipulating large payloads on orbit.Currently,there are few researches about the end-effector,and the existing end...The end-effector of the large space manipulator is employed to assist the manipulator in handling and manipulating large payloads on orbit.Currently,there are few researches about the end-effector,and the existing end-effectors have some disadvantages,such as poor misalignment tolerance capability and complex mechanical components.According to the end positioning errors and the residual vibration characters of the large space manipulators,two basic performance requirements of the end-effector which include the capabilities of misalignment tolerance and soft capture are proposed.And the end-effector should accommodate the following misalignments of the mechanical interface.The translation misalignments in axial and radial directions and the angular misalignments in roll,pitch and yaw are ±100 mm,100 mm,±10°,±15°,±15°,respectively.Seven end-effector schemes are presented and the capabilities of misalignment tolerance and soft capture are analyzed elementarily.The three fingers-three petals end-effector and the steel cable-snared end-effector are the most feasible schemes among the seven schemes,and they are designed in detail.The capabilities of misalignment tolerance and soft capture are validated and evaluated,through the experiment on the micro-gravity simulating device and the dynamic analysis in ADAMS software.The results show that the misalignment tolerance capabilities of these two schemes could satisfy the requirement.And the translation misalignment tolerances in axial and radial directions and the angular misalignment tolerances in roll,pitch and yaw of the steel cable-snared end-effector are 30mm,15mm,6°,3° and 3° larger than those of the three fingers-three petals end-effector,respectively.And the contact force of the steel cable-snared end-effector is smaller and smoother than that of the three fingers-three petals end-effector.The end-effector schemes and research methods are beneficial to the developments of the large space manipulator end-effctor and the space docking mechanism.展开更多
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
基金supported by National Hi-tech Research and Development Program of China(863 Program,Grant No. 2006AA04Z228)
文摘The end-effector of the large space manipulator is employed to assist the manipulator in handling and manipulating large payloads on orbit.Currently,there are few researches about the end-effector,and the existing end-effectors have some disadvantages,such as poor misalignment tolerance capability and complex mechanical components.According to the end positioning errors and the residual vibration characters of the large space manipulators,two basic performance requirements of the end-effector which include the capabilities of misalignment tolerance and soft capture are proposed.And the end-effector should accommodate the following misalignments of the mechanical interface.The translation misalignments in axial and radial directions and the angular misalignments in roll,pitch and yaw are ±100 mm,100 mm,±10°,±15°,±15°,respectively.Seven end-effector schemes are presented and the capabilities of misalignment tolerance and soft capture are analyzed elementarily.The three fingers-three petals end-effector and the steel cable-snared end-effector are the most feasible schemes among the seven schemes,and they are designed in detail.The capabilities of misalignment tolerance and soft capture are validated and evaluated,through the experiment on the micro-gravity simulating device and the dynamic analysis in ADAMS software.The results show that the misalignment tolerance capabilities of these two schemes could satisfy the requirement.And the translation misalignment tolerances in axial and radial directions and the angular misalignment tolerances in roll,pitch and yaw of the steel cable-snared end-effector are 30mm,15mm,6°,3° and 3° larger than those of the three fingers-three petals end-effector,respectively.And the contact force of the steel cable-snared end-effector is smaller and smoother than that of the three fingers-three petals end-effector.The end-effector schemes and research methods are beneficial to the developments of the large space manipulator end-effctor and the space docking mechanism.