The reserved judgment can be broadly categorized into three types: Re-Do, Re-Set, and Natural Flowing Case (i.e. step by step in Re-Try). Hori et al. constructed the Bayes-Fuzzy Estimation and demonstrated that system...The reserved judgment can be broadly categorized into three types: Re-Do, Re-Set, and Natural Flowing Case (i.e. step by step in Re-Try). Hori et al. constructed the Bayes-Fuzzy Estimation and demonstrated that system theory can be applied to the possibility of Markov processes, and that decision-making approaches can be applied to sequential Bayes estimation. In this paper, we focus on the Natural Flowing Case within reserved judgment. Here, the possibility of oblique (or principal) factor rotation is considered as a part of the tandem fuzzy system that follows step by step for sequential Bayes estimation. Ultimately, we achieve a significant result whereby the expected utility can be calculated automatically without the need to construct a utility function for reserved judgment. There, this utility in Re-Do can be calculated by the prior utility, and that utility in Re-set does not exist by our research in this paper. Finally, we elucidate the relationship between fuzzy system theory and fuzzy decision theory through an applied example of Bayes-Fuzzy theory. Fuzzy estimation can be applied to only normal making decision, but it is impossible to apply abnormal decision problem. Our Vague, specially Type 2 Vague can be applied to abnormal case, too.展开更多
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ...Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
The appraisement of "the green level" for a green product is a problem that has to deal with multi aspects and multi stratification. According to the property of the items that affect "the green level...The appraisement of "the green level" for a green product is a problem that has to deal with multi aspects and multi stratification. According to the property of the items that affect "the green level" of the product, they can be divided into aspects, elements and factors. These make appreciable grades. Multi level fuzzy judgement can solve the appraisement problem that considers the influences of design, manufacture, use and recovery in all life cycle or multi life cycle of a product. In the judging process it not only deals with the action of all factors, but also continues to have all messages in grade judgement. The power coefficients stand out as the main items. An example is given to show the judgement process.展开更多
The appraisement of "the green level" for a green p ro duct is a problem that has to deal with multi-aspect and multi-stratification. According to the property of the items that affect "the green level&...The appraisement of "the green level" for a green p ro duct is a problem that has to deal with multi-aspect and multi-stratification. According to the property of the items that affect "the green level" of the pro duct, they can be divided into aspects, elements and factors. These make appreci able grades. The multi-level fuzzy judgement can solve the appraisement problem that considers the influences of design, manufacture, use and recovery in all- life cycle or multi-life cycle of product. In the judging process it is not onl y deal with the action of all factors, but also continue to have all messages in grade judgement. The power coefficients stand out as the main items. An example is given to show the judgement process.展开更多
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi...With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.展开更多
We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform...We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.展开更多
Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in th...Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.展开更多
文摘The reserved judgment can be broadly categorized into three types: Re-Do, Re-Set, and Natural Flowing Case (i.e. step by step in Re-Try). Hori et al. constructed the Bayes-Fuzzy Estimation and demonstrated that system theory can be applied to the possibility of Markov processes, and that decision-making approaches can be applied to sequential Bayes estimation. In this paper, we focus on the Natural Flowing Case within reserved judgment. Here, the possibility of oblique (or principal) factor rotation is considered as a part of the tandem fuzzy system that follows step by step for sequential Bayes estimation. Ultimately, we achieve a significant result whereby the expected utility can be calculated automatically without the need to construct a utility function for reserved judgment. There, this utility in Re-Do can be calculated by the prior utility, and that utility in Re-set does not exist by our research in this paper. Finally, we elucidate the relationship between fuzzy system theory and fuzzy decision theory through an applied example of Bayes-Fuzzy theory. Fuzzy estimation can be applied to only normal making decision, but it is impossible to apply abnormal decision problem. Our Vague, specially Type 2 Vague can be applied to abnormal case, too.
基金supported in part by the Research on the Application of Multimodal Artificial Intelligence in Diagnosis and Treatment of Type 2 Diabetes under Grant No.2020SK50910in part by the Hunan Provincial Natural Science Foundation of China under Grant 2023JJ60020.
文摘Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
文摘The appraisement of "the green level" for a green product is a problem that has to deal with multi aspects and multi stratification. According to the property of the items that affect "the green level" of the product, they can be divided into aspects, elements and factors. These make appreciable grades. Multi level fuzzy judgement can solve the appraisement problem that considers the influences of design, manufacture, use and recovery in all life cycle or multi life cycle of a product. In the judging process it not only deals with the action of all factors, but also continues to have all messages in grade judgement. The power coefficients stand out as the main items. An example is given to show the judgement process.
文摘The appraisement of "the green level" for a green p ro duct is a problem that has to deal with multi-aspect and multi-stratification. According to the property of the items that affect "the green level" of the pro duct, they can be divided into aspects, elements and factors. These make appreci able grades. The multi-level fuzzy judgement can solve the appraisement problem that considers the influences of design, manufacture, use and recovery in all- life cycle or multi-life cycle of product. In the judging process it is not onl y deal with the action of all factors, but also continue to have all messages in grade judgement. The power coefficients stand out as the main items. An example is given to show the judgement process.
基金supported by the National Natural Science Foundation of China under Grant 52077146.
文摘With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.
基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the National Key R&D Program of China(Grants No.2018YFA0306600)+5 种基金the National Natural Science Foundation of China(Grant Nos.11974330 and 92165206)the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH004)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0302200 and 2021ZD0301603)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000)the Hefei Comprehensive National Science Centerthe Fundamental Research Funds for the Central Universities。
文摘We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.
文摘Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.