In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection m...In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability.展开更多
At present,the prevalence of diabetes is increasing because the human body cannot metabolize the glucose level.Accurate prediction of diabetes patients is an important research area.Many researchers have proposed tech...At present,the prevalence of diabetes is increasing because the human body cannot metabolize the glucose level.Accurate prediction of diabetes patients is an important research area.Many researchers have proposed techniques to predict this disease through data mining and machine learning methods.In prediction,feature selection is a key concept in preprocessing.Thus,the features that are relevant to the disease are used for prediction.This condition improves the prediction accuracy.Selecting the right features in the whole feature set is a complicated process,and many researchers are concentrating on it to produce a predictive model with high accuracy.In this work,a wrapper-based feature selection method called recursive feature elimination is combined with ridge regression(L2)to form a hybrid L2 regulated feature selection algorithm for overcoming the overfitting problem of data set.Overfitting is a major problem in feature selection,where the new data are unfit to the model because the training data are small.Ridge regression is mainly used to overcome the overfitting problem.The features are selected by using the proposed feature selection method,and random forest classifier is used to classify the data on the basis of the selected features.This work uses the Pima Indians Diabetes data set,and the evaluated results are compared with the existing algorithms to prove the accuracy of the proposed algorithm.The accuracy of the proposed algorithm in predicting diabetes is 100%,and its area under the curve is 97%.The proposed algorithm outperforms existing algorithms.展开更多
The time-dependence bilinear mixed-regression deformation model and time-dependence bilinear dynamic system deformation model are established for deformation observation series. According to the multi- level recursive...The time-dependence bilinear mixed-regression deformation model and time-dependence bilinear dynamic system deformation model are established for deformation observation series. According to the multi- level recursive method, the time-dependence parameters are first traced and predicted, and then the dynamic system states. Due to the method considering time-dependence of deformation and having stronger adaptability to time-dependence system, it can improve forecast’s precision. It is very effective for data processing of nonlinear dynamic deformation monitoring to make multi-step forecasting.展开更多
基金supported by National Key Research and Development Program of China(No.2016YFF0102502)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-JSC037)the Youth Innovation Promotion Association,CAS,Liao Ning Revitalization Talents Program(No.XLYC1807110)。
文摘In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability.
文摘At present,the prevalence of diabetes is increasing because the human body cannot metabolize the glucose level.Accurate prediction of diabetes patients is an important research area.Many researchers have proposed techniques to predict this disease through data mining and machine learning methods.In prediction,feature selection is a key concept in preprocessing.Thus,the features that are relevant to the disease are used for prediction.This condition improves the prediction accuracy.Selecting the right features in the whole feature set is a complicated process,and many researchers are concentrating on it to produce a predictive model with high accuracy.In this work,a wrapper-based feature selection method called recursive feature elimination is combined with ridge regression(L2)to form a hybrid L2 regulated feature selection algorithm for overcoming the overfitting problem of data set.Overfitting is a major problem in feature selection,where the new data are unfit to the model because the training data are small.Ridge regression is mainly used to overcome the overfitting problem.The features are selected by using the proposed feature selection method,and random forest classifier is used to classify the data on the basis of the selected features.This work uses the Pima Indians Diabetes data set,and the evaluated results are compared with the existing algorithms to prove the accuracy of the proposed algorithm.The accuracy of the proposed algorithm in predicting diabetes is 100%,and its area under the curve is 97%.The proposed algorithm outperforms existing algorithms.
文摘The time-dependence bilinear mixed-regression deformation model and time-dependence bilinear dynamic system deformation model are established for deformation observation series. According to the multi- level recursive method, the time-dependence parameters are first traced and predicted, and then the dynamic system states. Due to the method considering time-dependence of deformation and having stronger adaptability to time-dependence system, it can improve forecast’s precision. It is very effective for data processing of nonlinear dynamic deformation monitoring to make multi-step forecasting.