期刊文献+
共找到786篇文章
< 1 2 40 >
每页显示 20 50 100
Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints
1
作者 Pei Zhang Xiaodong Song +2 位作者 Jiangtao Li Xingchen Wang Xuezhen Zhang 《Earthquake Science》 2024年第2期93-106,共14页
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j... Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region. 展开更多
关键词 joint inversion receiver functions surface waves crustal thickness vP/vS ratio NE Qinghai-Xizang Plateau
下载PDF
Fast 3D joint inversion of gravity and magnetic data based on cross gradient constraint
2
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Songbai Xuan Quan Lou Binbin Qin Rongfu Peng Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第4期331-346,共16页
The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed ph... The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models,the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data.The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients.The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference.Then,the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models.Therefore,the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least,and the compression ratio increases with the increase of the number of grid cells.The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency. 展开更多
关键词 Gravity and magnetic data joint inversion TRIPLE Cross-gradient constraint
下载PDF
Joint inversion of Rayleigh group and phase velocities for S-wave velocity structure of the 2021 M_(S)6.0 Luxian earthquake source area,China
3
作者 Wei Xu Pingping Wu +4 位作者 Dahu Li Huili Guo Qiyan Yang Laiyu Lu Zhifeng Ding 《Earthquake Science》 2023年第5期356-375,共20页
On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dim... On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter,by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s.The results showed that the velocity model varied significantly beneath different geological units.The Yujiasi syncline is characterized by low velocity at depths of~3.0–4.0 km,corresponding to the stable sedimentary layer in the Sichuan Basin.The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction,with a few local low-velocity zones.The Luxian MS6.0 earthquake epicenter is located at the boundary between the high-and low-velocity zones,and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km.Integrated with the velocity variations around the epicenter,distribution of aftershock sequences,and focal mechanism solution,it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing. 展开更多
关键词 Luxian earthquake ambient noise tomography S-wave velocity model SEISMICITY seismogenic mechanism joint inversion
下载PDF
Joint inversion of gravity and vertical gradient data based on modified structural similarity index for the structural and petrophysical consistency constraint
4
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Quan Lou Songbai Xuan Binbin Qin Yiju Tang Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第5期485-499,共15页
Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysica... Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results. 展开更多
关键词 joint inversion Gravity and vertical gradient data Modified structural similarity index
下载PDF
Curupira V1.0: Joint Inversion of VES and TEM for Environmental and Mass Movements Studies
5
作者 Cassiano Antonio Bortolozo Jorge Luís Porsani +9 位作者 Tristan Pryer Jorge Luis Abril Benjumea Fernando Acácio Monteiro dos Santos Marco Antonio Couto Jr. Luana Albertani Pampuch Tatiana Sussel Gonçalves Mendes Daniel Metodiev Marcio Augusto Ernesto de Moraes Rodolfo Moreda Mendes Marcio Roberto Magalhães de Andrade 《International Journal of Geosciences》 2023年第11期1160-1176,共17页
An innovative inversion code, named “Curupira v1.0”, has been developed using Matlab to determine the vertical distribution of resistivity beneath the subsoil. The program integrates Vertical Electrical Sounding (VE... An innovative inversion code, named “Curupira v1.0”, has been developed using Matlab to determine the vertical distribution of resistivity beneath the subsoil. The program integrates Vertical Electrical Sounding (VES), successful in shallow subsurface exploration and Time Domain Electromagnetic (TEM) techniques, better suited for deeper exploration, both of which are widely employed in geophysical exploration. These methodologies involve calculating subsurface resistivity through appropriate inversion processes. To address the ill-posed nature of inverse problems in geophysics, a joint inversion scheme combining VES and TEM data has been incorporated into Curupira v1.0. The software has been tested on both synthetic and real-world data, the latter of which was acquired from the Parana sedimentary basin which we summarise here. The results indicate that the joint inversion of VES and TEM techniques offers improved recovery of simulated models and demonstrates significant potential for hydrogeological studies. 展开更多
关键词 VES TEM joint inversion CRS—Controlled Random Search Paraná Sedimentary Basin Brazil
下载PDF
THE MULTI-PARAMETER INVERSION OF ELASTIC WAVE IN HALF-SPACE
6
作者 Zhong Weifang Tang Shengbao Chen Baihong 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第2期129-135,共7页
The multi-parameter inverse scattering problem of elastic wave equation with single fre-quency is investigated within Born approximation.By use of a wideband measuring scheme in whichboth transmitters and receivers sc... The multi-parameter inverse scattering problem of elastic wave equation with single fre-quency is investigated within Born approximation.By use of a wideband measuring scheme in whichboth transmitters and receivers scan over the half-space surface,the formula of the scattering field ofelastic wave is derived.Four types of mode conversion of elastic wave (P→P,P→S,S→P,S→S) areseparated from the scattering field.These components contain sufficient information for us to recon-struct the configurations of the density and Lamé parameters of the medium.The inverse formulashave the form of filtered back-propagation as in the acoustic diffraction tomography.Computer simu-lations are also obtained. 展开更多
关键词 ELASTIC WAVE multi-parameter inversE SCATTERING
下载PDF
Elastic direct envelope inversion based on wave mode decomposition for multi-parameter reconstruction of strong-scattering media
7
作者 Pan Zhang Ru-Shan Wu +1 位作者 Li-Guo Han Yong Hu 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2046-2063,共18页
The parameter reconstruction of strong-scattering media is a challenge for conventional full waveform inversion(FWI).Direct envelope inversion(DEI)is an effective method for large-scale and strongscattering structures... The parameter reconstruction of strong-scattering media is a challenge for conventional full waveform inversion(FWI).Direct envelope inversion(DEI)is an effective method for large-scale and strongscattering structures imaging without the need of low-frequency seismic data.However,the current DEI methods are all based on the acoustic approximation.Whereas,in real cases,seismic records are the combined effects of the subsurface multi-parameters.Therefore,the study of DEI in elastic media is necessary for the accurate inversion of strong-scattering structures,such as salt domes.In this paper,we propose an elastic direct envelope inversion(EDEI)method based on wave mode decomposition.We define the objective function of EDEI using multi-component seismic data and derive its gradient formulation.To reduce the coupling effects of multi-parameters,we introduce the wave mode decomposition method into the gradient calculation of EDEI.The update of Vp is primarily the contributions of decomposed P-waves.Two approaches on Vs gradient calculation are proposed,i.e.using the petrophysical relation and wave mode decomposition method.Finally,we test the proposed method on a layered salt model and the SEG/EAGE salt model.The results show that the proposed EDEI method can reconstruct reliable large-scale Vp and Vs models of strong-scattering salt structures.The successive elastic FWI can obtain high-precision inversion results of the strong-scattering salt model.The proposed method also has a good anti-noise performance in the moderate noise level. 展开更多
关键词 Direct envelope inversion Full waveform inversion Elastic wave Strong-scattering media multi-parameter
下载PDF
Nonlinear joint PP-PS AVO inversion based on improved Bayesian inference and LSSVM 被引量:7
8
作者 Xie Wei Wang Yan-Chun +4 位作者 Liu Xue-Qing Bi Chen-Chen Zhang Feng-Qi Fang Yuan Tahir Azeem 《Applied Geophysics》 SCIE CSCD 2019年第1期64-76,共13页
Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equatio... Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equations for multiple iterations. Therefore the inversion results of P-wave, S-wave velocity and density exhibit low precision in the faroffset;thus, the joint PP–PS AVO inversion is nonlinear. Herein, we propose a nonlinear joint inversion method based on exact Zoeppritz equations that combines improved Bayesian inference and a least squares support vector machine (LSSVM) to solve the nonlinear inversion problem. The initial parameters of Bayesian inference are optimized via particle swarm optimization (PSO). In improved Bayesian inference, the optimal parameter of the LSSVM is obtained by maximizing the posterior probability of the hyperparameters, thus improving the learning and generalization abilities of LSSVM. Then, an optimal nonlinear LSSVM model that defi nes the relationship between seismic refl ection amplitude and elastic parameters is established to improve the precision of the joint PP–PS AVO inversion. Further, the nonlinear problem of joint inversion can be solved through a single training of the nonlinear inversion model. The results of the synthetic data suggest that the precision of the estimated parameters is higher than that obtained via Bayesian linear inversion with PP-wave data and via approximations of the Zoeppritz equations. In addition, results using synthetic data with added noise show that the proposed method has superior anti-noising properties. Real-world application shows the feasibility and superiority of the proposed method, as compared with Bayesian linear inversion. 展开更多
关键词 NONLINEAR problem joint PP-PS AVO inversion particle swarm optimization Bayesian inference least SQUARES support vector machine
下载PDF
Source model of the 11th July 2004 Zhongba earthquake revealed from the joint inversion of InSAR and seismological data 被引量:3
9
作者 Shengji Wei Sidao Ni +1 位作者 Xianjie Zha Don Helmberger 《Earthquake Science》 CSCD 2011年第2期207-220,共14页
We use interferometric synthetic aperture radar (InSAR) and broadband seismic waveform data to estimate a source model of the 11th July, 2004 M W 6.2 Zhongba earthquake, Tibet of China. This event occurred within the ... We use interferometric synthetic aperture radar (InSAR) and broadband seismic waveform data to estimate a source model of the 11th July, 2004 M W 6.2 Zhongba earthquake, Tibet of China. This event occurred within the seismically active zone of southwestern Tibetan Plateau where the east-west extension of the upper crust is observed. Because of limitations in one pair of InSAR data available, there are trade-offs among centroid depth, rupture area and amount of slip. Available seismic data tightly constrain the focal mechanism and centroid depth of the earthquake but not the horizontal location. Together, two complementary data sets can be used to identify the actual fault plane, better constrain the slip model and event location. We first use regional seismic waveform to estimate point source mechanism, then InSAR data is used to obtain better location. Finally, a joint inversion of teleseismic P-waves and InSAR data is performed to obtain a distributed model. Our preferred point source mechanism indicates a seismic moment of ~2.2×10 18 N·m (~M W 6.2), a fault plane solution of 171° (342 ° )/42 ° (48 ° )/-83 ° (-97 ° ), corresponding to strike/dip/rake, and a depth of 11 km. The fault plane with strike of 171 ° and dip of 42° is identified as the ruptured fault with the aid of InSAR data. The preferred source model features compact area of slips between depth of 5-11 km and 10 km along strike with maximum slip amplitude of about 1.5 m. 展开更多
关键词 finite fault INSAR joint inversion Zhongba earthquake
下载PDF
Coseismic deformation of the 2021 M_(W)7.4 Maduo earthquake from joint inversion of InSAR, GPS, and teleseismic data 被引量:1
10
作者 Chaoya Liu Ling Bai +5 位作者 Shunying Hong Yanfang Dong Yong Jiang Hongru Li Huili Zhan Zhiwen Chen 《Earthquake Science》 2021年第5期436-446,共11页
The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_... The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block. 展开更多
关键词 Maduo earthquake joint inversion coseismic de-formation fault geometry rupture process.
下载PDF
Effective elastic thickness of the lithosphere from joint inversion in western China and its implications 被引量:1
11
作者 Wen Shi Shi Chen Jiancheng Han 《Earthquake Science》 2020年第1期1-10,共10页
The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a ... The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a key factor in controlling the lithosphere dynamics and deformations.The effective elastic thickness(T_(e))of the lithosphere can be used to address the lithospheric strength.Previous researchers only used one of the admittance or coherence methods to investigate the T_(e) in the western China.Moreover,most of them ignored the internal loads of the lithosphere during the T_(e) calculation,which can produce large biases in the T_(e) estimations.To provide more reliable T_(e) estimations,we used a new joint inversion method that integrated both admittance and coherence techniques to compute the T_(e) in this study,with the WGM2012 gravity data,the ETOPO1 topographic data,and the Moho depths from the CRUST1.0 model.The internal loads are considered and investigated using the load ratio(F).Our results show that the joint inversion method can yield reliable T_(e) and F values.Based on the analysis of T_(e) and F distributions,we suggest(1)the northern Tibetan Plateau could be the front edge of the plate collision of Eurasian and Indian plates;(2)the southern and part of central Tibetan Plateau have a strong lithospheric mantle related to the rigid underthrusting Indian plate;(3)the southeastern Tibetan Plateau may be experiencing the delamination of lithosphere and upwelling of asthenosphere. 展开更多
关键词 effective elastic thickness joint inversion western China gravity anomaly lithospheric strength
下载PDF
Stepwise joint inversion of surface wave dispersion,Rayleigh wave ZH ratio,and receiver function data for 1D crustal shear wave velocity structure 被引量:6
12
作者 Ping Zhang Huajian Yao 《Earthquake Science》 CSCD 2017年第5期229-238,共10页
Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave ... Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio(i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity(v_S) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensitivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast(e.g., due to the existence of crustal interfaces) and v_P/v_S ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the v_S model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute v_S model and then incorporate receiver function data in the joint inversion to obtain a finer v_S model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal v_S structures and with little initial model dependency. 展开更多
关键词 表面波浪 速度结构 接收装置 外壳 比率 分散 倒置 瑞利
下载PDF
Rupture process of the 2011 Tohoku earthquake from the joint inversion of teleseismic and GPS data 被引量:6
13
作者 Yong Zhang Lisheng Xu Yun-tai Chen 《Earthquake Science》 CSCD 2012年第2期129-135,共7页
Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s... Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first occurred near the hypocenter and the rest two ruptured along the updip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake. 展开更多
关键词 震源破裂过程 GPS数据 联合反演 大地震 东北 远震 断层走向 子事件
下载PDF
3D joint inversion of controlled-source audio-frequency magnetotelluric and magnetotelluric data 被引量:1
14
作者 RONG Zhihao LIU Yunhe 《Global Geology》 2022年第1期26-33,共8页
Different geophysical exploration methods have significant differences in terms of exploration depth,especially in frequency domain electromagnetic(EM)exploration.According to the definition of skin depth,this differe... Different geophysical exploration methods have significant differences in terms of exploration depth,especially in frequency domain electromagnetic(EM)exploration.According to the definition of skin depth,this difference will increase with the effective detection frequency of the method.As a result,when performing three-dimensional inversion on single type of EM data,it is not possible to effectively distinguish the subsurface geoelectric structure at the full scale.Therefore,it is necessary to perform joint inversion on different type of EM data.In this paper we combine the magnetotelluric method(MT)with the controlled-source audio-magnetotelluric method(CSAMT)to study the frequency-domain three-dimensional(3D)joint inversions,and we use the unstructured finite-element method to do the forward modeling for them,so that the numerical simulation accuracies of different electromagnetic methods can be satisfied.By combining the two sets of data,we can obtain the sensitivity of the electrical structure at different depths,and depict the full-scale subsurface geoelectric structures.In actual mineral exploration,the 3D joint inversion is more useful for identifying subsurface veins in the shallow part and blind mines in the deep part.It can delineate the morphological distribution of ore bodies more completely and provide reliable EM interpretations to guide the mining of minerals. 展开更多
关键词 3D joint inversion controlled-source audio-frequency magnetotelluric method magnetotelluric method onshore mineral resource exploration
下载PDF
Joint inversion of gravity and seismic data along a profile across the seismogenic fault of 2010 Yushu Ms7. 1 earthquake 被引量:2
15
作者 Yang Guangliang Wang Fuyun +2 位作者 Shen Chongyang Sun Shaoan Tan Hongbo 《Geodesy and Geodynamics》 2011年第4期21-27,共7页
Yushu Ms7. 1 earthquake occurred on the Ganzi-Yushu fault zone,across which we carried out a joint relative-gravity and seismic-reflection survey,and then performed a gravity inversion constrained by the seismic-refle... Yushu Ms7. 1 earthquake occurred on the Ganzi-Yushu fault zone,across which we carried out a joint relative-gravity and seismic-reflection survey,and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection,we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement,we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduction of the Indian plate. 展开更多
关键词 联合反演 相对重力 地震数据 发震断层 玉树 剖面 地震反射数据 布格重力异常
下载PDF
Tomographic determination of 3-D crustal structure──Joint inversion of explosion and earthquake data
16
作者 张先康 杨卓欣 +3 位作者 杨玉春 杨健 宋建立 赵平 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第4期519-529,共11页
Tomographicdeterminationof3-Dcrustalstructure──Jointinversionofexplosionandearthquake dataXian-KangZHANG(张先康... Tomographicdeterminationof3-Dcrustalstructure──Jointinversionofexplosionandearthquake dataXian-KangZHANG(张先康);Zhuo-XinYANG(杨卓... 展开更多
关键词 explosion observation continuous model TOMOGRAPHY CRUSTAL STRUCTURE joint inversion
下载PDF
3D v_P and v_S models of southeastern margin of the Tibetan plateau from joint inversion of body-wave arrival times and surface-wave dispersion data 被引量:1
17
作者 Lina Gao Haijiang Zhang +1 位作者 Huajian Yao Hui Huang 《Earthquake Science》 CSCD 2017年第1期17-32,共16页
A new 3D velocity model of the crust and upper mantle in the southeastern(SE) margin of the Tibetan plateau was obtained by joint inversion of body-and surface-wave data. For the body-wave data, we used 7190 events re... A new 3D velocity model of the crust and upper mantle in the southeastern(SE) margin of the Tibetan plateau was obtained by joint inversion of body-and surface-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the v S model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the twolocated to the northeast of 2013 M S7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes(M≥5) in the region occurring from2008 to 2015 are located around the high-velocity zones,indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau. 展开更多
关键词 面波频散 青藏高原 联合反演 S模型 南缘 体波 时间 三维速度模型
下载PDF
The Application of Joint Inversion in Geophysical Exploration
18
作者 ákos Gyulai Mátyás Krisztián Baracza éva Eszter Tolnai 《International Journal of Geosciences》 2013年第2期283-289,共7页
The paper presents a short overview about the application of joint inversion in geophysics. It gives also an alternative explanation for the term of “different data sets” and discusses what types of inversion proced... The paper presents a short overview about the application of joint inversion in geophysics. It gives also an alternative explanation for the term of “different data sets” and discusses what types of inversion procedures can be considered as joint inversion. Nowadays there are no standard standpoints using the appellation joint inversion. What is joint inversion? Based on the information matrix an answer could be given for this question what could be regarded as various types of data sets that are inverted simultaneously. We would like to expand the explanation—that is professed by many researchers—of the method that regards only the simultaneous inversion of data sets based on different physical parameters as joint inversion. 展开更多
关键词 joint inversion SIMULTANEOUS inversion GEOPHYSICAL SERIOUS EXPANSION
下载PDF
Lithological Characterization and Its Application Based on Three-Dimensional Structure-Coupled Joint Inversion of Gravity and Magnetic Data
19
作者 Junjie Zhou Xingdong Zhang Chunxiao Xiu 《International Journal of Geosciences》 2015年第3期230-237,共8页
Incorporating structural-coupling constraint, known as the cross-gradients criterion, helps to improve the focussing trend in cross-plot of multiple physical properties. Based on this feature, a?post-processing techni... Incorporating structural-coupling constraint, known as the cross-gradients criterion, helps to improve the focussing trend in cross-plot of multiple physical properties. Based on this feature, a?post-processing technique is studied to characterize the lithological types of subsurface geological materials after joint inversion. A simple domain transform, which converts two kinds of participant physical properties into an artificial complex array, is adopted to extract anomalies manually from homogenous host rock. A synthetic example shows that structure-coupled joint inverted results tend to concentrate on the feature trends in the cross-plot, and the main geological targets are recovered well by a radius-azimuth plot. In a field data example, the lithological characterization?reveals that the main rock types interpreted in the study area agree with the geological information, thus demonstrating the feasibility of this technique. 展开更多
关键词 Lithological CHARACTERIZATION Structure-Coupled joint inversion Density CONTRAST MAGNETIZATION
下载PDF
Simultaneous Structure-Coupled Joint Inversion of Gravity and Magnetic Data Based on a Damped Least-Squares Technique
20
作者 Junjie Zhou Chunxiao Xiu Xingdong Zhang 《International Journal of Geosciences》 2015年第2期172-179,共8页
The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional pro... The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional procedure is inefficient due to the truncated singular values decomposition?(SVD) process at each iteration. To improve the algorithm, a technique using damped leastsquares?is adopted to calculate the structural term of model updates, instead of the truncated SVD. This?produces structural coupled density and magnetization images with high efficiency. A so-called?coupling factor is introduced to regulate the tuning of the desired final structural similarity level.?Synthetic examples show that the joint inversion results are internally consistent and achieve?higher?resolution than separated. The acceptable runtime performance of the damped least squares?technique used in joint inversion indicates that it is more suitable for practical use than the truncated SVD method. 展开更多
关键词 Structure-Coupled joint inversion DAMPED LEAST-SQUARES Coupling Factor GRAVITY and Magnetic Data
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部