By laser scanning fluorescence microscopy for quan-titative measurement of fluorescence intensity changes on egg surface stained with fluorescein isothiocyanate duxing cleavage furrow extending forward, it was found t...By laser scanning fluorescence microscopy for quan-titative measurement of fluorescence intensity changes on egg surface stained with fluorescein isothiocyanate duxing cleavage furrow extending forward, it was found that in area of presumptive cleavage furrow the scanning curve became ∨ shape, indicating dark stripe appeared in that place. Then the fluorescence intensity increased at the place where the botton of ∨ shape had located, and the scanning curve tuxned to ∧ shape, indicating single stripe was formed. While enhanced fluorescence appeared on the borders of ∧ shape, an M shape curve was found, show-ing double stripe occurred. During the distance between two borders of M shape incresing from 50 μm to 100μm,a fluorescence peak came to sight in the middle of the M shape, which being the cleavge furrow bottom. The two lateral sides of furrow bottom with decreasing fluorescence were nascent membrane. At that time the curve became W shape. By the sides of cleavage furrow the the stress folds became conspicous after double stripe stage, showing the stretching of the egg surface being increased. With our[31, 33] and others[32] reports that polylysine could induce the appearance of nascent membrane and phyto-hemagglutinins could decrease or prevent the appearance of nascent membrane, we believed the idea of Schroeder[25] that increasing mechanical stress could initiate nascent membrane formation and thought that the stress lay to the outsides of cleavage furrow.展开更多
AIM To investigate the application of confocallaser scanning microscopy(CLSM)in tumorpathology and three-dimensional( 3-D )reconstruction by CLSM in pathologic specimensof hepatocellular carcinoma(HCC).METHODS The 30...AIM To investigate the application of confocallaser scanning microscopy(CLSM)in tumorpathology and three-dimensional( 3-D )reconstruction by CLSM in pathologic specimensof hepatocellular carcinoma(HCC).METHODS The 30μm thick sections were cutfrom the paraffin-embedded tissues of HCC,hyperplasia and normal liver,stained with DNAfluorescent probe YOYO-1 iodide and examinedby CLSM to collect optical sections of nuclei and3-D images reconstructed.RESULTS HCC displayed chaotic arrangementof carcinoma cell nuclei,marked pleomorphism,indented and irregular nuclear surface,andirregular and coarse chromatin texture.CONCLUSION The serial optical tomograms ofCLSM can be used to create 3-D reconstruction ofcancer cell nuclei.Such 3-D impressions mightbe helpful or even essential in making anaccurate diagnosis.展开更多
Using laser scanning confocal microscopy, we have found that the in cells loaded with fluo-3/AM, highest intracellular Ca(2+) in the perinuclear region is associated with the Golgi apparatus. The spatiotemporal subcel...Using laser scanning confocal microscopy, we have found that the in cells loaded with fluo-3/AM, highest intracellular Ca(2+) in the perinuclear region is associated with the Golgi apparatus. The spatiotemporal subcellu lar distribution of Ca(2+) in living human fibroblasts exposing to calcium-free medium in response to agonists has been investigated. PDGF, which releases Ca(2+) from intracellular stores by inositol(1, 4, 5)-trisphosphate pathway,produced a biphasic transient rise in intracellular calcium.The initial rise was resulted from a direct release of calcium from the Golgi apparatus. Calcium could be also released from and reaccumulated into the Golgi apparatus by the stimulation of thapsigargin, an inhibitor of the Ca(2+) transport ATPase of intracellular calcium store. Permeablizing the plasma membrane by 10 μM digitonin resulted in the calcium release from the Golgi apparatus and depletion of the internal calcium store. These results suggest that the Golgi apparatus plays a role in Ca(2+) regulation in signal transduction.展开更多
Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously anal...Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.展开更多
The interphase nuclei of parenchyma cells and epidermal cells of garlic ( Allium sativum L.) clove were labelled with rabbit anti_actin antibody and FITC_conjugated goat anti_rabbit IgG antibody. The authors observ...The interphase nuclei of parenchyma cells and epidermal cells of garlic ( Allium sativum L.) clove were labelled with rabbit anti_actin antibody and FITC_conjugated goat anti_rabbit IgG antibody. The authors observed results with fluorescence microscopy and confocal laser scanning microscopy. The nuclei showed prominent green_yellow fluorescence, indicating the presence of actin in the nuclei. Fluorescence examination with TRITC_phalloidin showed distinctive red fluorescence in the nuclei, indicating that F_actin is present in the nuclei. Confocal laser scanning microscopy indicated the presence of F_actin containing network structures in the nuclei, but the network structures were absent and the nuclei still showed red fluorescence when the cells were treated with cytochalasin D before fixation; the red fluorescence in the nuclei was hard to be observed when the cells were treated with unlabelled phalloidin before the cells were stained with TRITC_phalloidin. These results indicate that F_actin is in the nuclei and forms network structures in the nuclei of garlic cells.展开更多
Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and conf...Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluores-cent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simulta-neously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drug- treating living cells at the level of single cell.展开更多
Objective To examine the effects of melatonin on the dynamic changes in the concentration of intracellular free Ca 2+ ([Ca 2+ ]i) in single intact cultured cortical neurons isolated from fetal rats, in order...Objective To examine the effects of melatonin on the dynamic changes in the concentration of intracellular free Ca 2+ ([Ca 2+ ]i) in single intact cultured cortical neurons isolated from fetal rats, in order to explore the possible antiaging mechanisms of melatonin (MT) Methods Using the highly fluorescent Ca 2+ sensitive indicator Fluo 3/AM, cortical neurons cultured in a 35?mm Tissue Culture Dish were in incubated for 45?min at room temperature with 5?μmol/L Fluo 3/AM, resulting in proper intracellular dye concentration to provide adequate signal strength for detection and excellent Laser Scanning Confocal Microscopy (LSCM) imaging of [Ca 2+ ]i while not disturbing normal intracellular physiology The changes in fluorescent intensity were monitored by LSCM Results Bay K8644 (10 6 ?mol/L), KCl (20 ?mmol/L), sodium L glutamate (Glu, 50?μmol/L) caused a rapid increase of [Ca 2+ ]i in cortical neurons, and this increase could be significantly attenuated by 10 6 and 10 7 mol/L MT Conclusions MT could antagonize the extracellular Ca 2+ influx, reduce Ca 2+ overload, and have a protective effect on neurons This may be one of the important antiaging mechanisms of MT展开更多
Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of ...Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.展开更多
Zeiss LSM 880 with Airyscan是一款多功能、高分辨率、高效率的激光扫描共聚焦显微镜(以下称激光共聚焦显微镜)。结合使用和管理的经验,本文对激光共聚焦显微镜的原理、LSM 880 with Airyscan的高级功能及日常维护管理等内容进行详细...Zeiss LSM 880 with Airyscan是一款多功能、高分辨率、高效率的激光扫描共聚焦显微镜(以下称激光共聚焦显微镜)。结合使用和管理的经验,本文对激光共聚焦显微镜的原理、LSM 880 with Airyscan的高级功能及日常维护管理等内容进行详细介绍。列举了Airyscan、长时间多视野拍摄、Experiment Designer、荧光漂白后恢复(FRAP)、光谱扫描/拆分、荧光能量共振转移(FRET)、Tile Scan和Line Scan快速成像技巧等高级功能,供管理人员或同行使用者借鉴参考。展开更多
Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material inte...Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.展开更多
Main observation and conclusion A single particle-based confocal laser scanning microscopy was developed for the visual detection of copper ions in confined space.A fluorescence microparticle,named AuNCs/ZIF-8,was syn...Main observation and conclusion A single particle-based confocal laser scanning microscopy was developed for the visual detection of copper ions in confined space.A fluorescence microparticle,named AuNCs/ZIF-8,was synthesized by coating gold nanoclusters(AuNCs)onto the outer surface of zeolitic imidazolate framework-8(ZIF-8).展开更多
This article summarizes work at the Laser Thermal Laboratory and discusses related studies on the laser synthesis and functionalization of semiconductor nanostructures and two-dimensional(2D)semiconductor materials.Re...This article summarizes work at the Laser Thermal Laboratory and discusses related studies on the laser synthesis and functionalization of semiconductor nanostructures and two-dimensional(2D)semiconductor materials.Research has been carried out on the laser-induced crystallization of thin films and nanostructures.The in situ transmission electron microscopy(TEM)monitoring of the crystallization of amorphous precursors in nanodomains is discussed herein.The directed assembly of silicon nanoparticles and the modulation of their optical properties by phase switching is presented.The vapor-liquid-solid mechanism has been adopted as a bottom-up approach in the synthesis of semiconducting nanowires(NWs).In contrast to furnace heating methods,laser irradiation offers high spatial selectivity and precise control of the heating mechanism in the time domain.These attributes enabled the investigation of NW nucleation and the early stage of nanostructure growth.Site-and shape-selective,on-demand direct integration of oriented NWs was accomplished.Growth of discrete silicon NWs with nanoscale location selectivity by employing near-field laser illumination is also reported herein.Tuning the properties of 2D transition metal dichalcogenides(TMDCs)by modulating the free carrier type,density,and composition can offer an exciting new pathway to various practical nanoscale electronics.In situ Raman probing of laser-induced processing of TMDC flakes was conducted in a TEM instrument.展开更多
In this paper,high density polyethylene (HDPE)/poly(ethylene-co-butene) (PEB) blend (50/50 wt%) was prepared through solution blending and then compression molding,and subsequently examined by laser scanning confocal ...In this paper,high density polyethylene (HDPE)/poly(ethylene-co-butene) (PEB) blend (50/50 wt%) was prepared through solution blending and then compression molding,and subsequently examined by laser scanning confocal microscopy (LSCM). The PEB used in this experiment was labeled with a small quantity of a fluorescein derivative to render fluorescence. The initial films showed uniform dye dis-tribution and no indication of phase separation within the resolution of optical microscopy. Sample films annealing at 140℃ followed by rapid cooling to room temperature showed obvious phase sepa-ration and bicontinuous structure. The present work indicates that by labeling one component with fluorescein derivative,LSCM can efficiently perform in situ depth profiling of polymer blends.展开更多
Surface coatings provide protection to wood products against weathering and other deteriorating factors, such as moisture uptake and microbial invasion. The effectiveness of coatings depends on many factors, including...Surface coatings provide protection to wood products against weathering and other deteriorating factors, such as moisture uptake and microbial invasion. The effectiveness of coatings depends on many factors, including how well the applied coatings adhere to the wood surface. Coating adhesion to wood involves both chemical and physical interactions between the coating and wood tissues in contact, and the particular focus of this mini-review will be on the advances being made in understanding the physical aspects of the interaction by probing wood-coating interface using novel and high resolution imaging techniques, including confocal laser scanning microscopy (CLSM), SEM-backscattered electron imaging and correlative microscopy employing light, confocal and scanning electron microscopy.展开更多
Investigation intracellular trafficking of siRNAs following their delivery to cells is of great interest to elucidate dynamics of siRNA in cytoplasm. In this study, we present a novel confocal laser scanning microsco...Investigation intracellular trafficking of siRNAs following their delivery to cells is of great interest to elucidate dynamics of siRNA in cytoplasm. In this study, we present a novel confocal laser scanning microscopy (CLSM) method to evaluate a novel delivery system of 3'-peptide-siRNA therapeutic, which was named 3'-pAs-siRNA/CLD. This method could not only calculate the content of the intracellular 3'-peptide-siRNA, but also quantify its co-localization with cellular substructure. We observed that 3'-pAs-siRNA/CLD, which provided the better antitumor capability, also had a better cell uptake, endosome escape and a longer retention time in A375. This novel strategy was proved to be efficient, quantified and visualized, thus making the dynamics research of siRNA in cytoplasm clear and simplified.展开更多
To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)c...To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)contents(0-10wt%),and scanning electron microscopy was performed to study the interfacial reaction between Al_(2)O_(3)and this slag system.The results disclose that the dissolution of Al_(2)O_(3)inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions.In TiO_(2)-bearing and TiO_(2)-free ladle slags,there is no difference in the dissolution mechanism of Al_(2)O_(3)inclusions at steelmaking temperatures.Boundary layer diffusion is found as the controlling step of the dissolution of Al_(2)O_(3),and the diffusion coefficient is in the range of 4.18×10^(-10)to 2.18×10^(-9)m^(2)/s at 1450-1500℃.Compared with the solubility of Al_(2)O_(3)in the slags,slag viscosity and temperature play a more profound role in the dissolution of Al_(2)O_(3)inclusions.A lower viscosity and a lower melting point of the slags are beneficial for the dissolution.Suitable addition of TiO_(2)(e.g.,5wt%)in ladle slags can enhance the dissolution of Al_(2)O_(3)inclusions because of the low viscosity and melting point of the slags,while excessive addition of TiO_(2)(e.g.,10wt%)shows the opposite trend.展开更多
Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the...Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.展开更多
文摘By laser scanning fluorescence microscopy for quan-titative measurement of fluorescence intensity changes on egg surface stained with fluorescein isothiocyanate duxing cleavage furrow extending forward, it was found that in area of presumptive cleavage furrow the scanning curve became ∨ shape, indicating dark stripe appeared in that place. Then the fluorescence intensity increased at the place where the botton of ∨ shape had located, and the scanning curve tuxned to ∧ shape, indicating single stripe was formed. While enhanced fluorescence appeared on the borders of ∧ shape, an M shape curve was found, show-ing double stripe occurred. During the distance between two borders of M shape incresing from 50 μm to 100μm,a fluorescence peak came to sight in the middle of the M shape, which being the cleavge furrow bottom. The two lateral sides of furrow bottom with decreasing fluorescence were nascent membrane. At that time the curve became W shape. By the sides of cleavage furrow the the stress folds became conspicous after double stripe stage, showing the stretching of the egg surface being increased. With our[31, 33] and others[32] reports that polylysine could induce the appearance of nascent membrane and phyto-hemagglutinins could decrease or prevent the appearance of nascent membrane, we believed the idea of Schroeder[25] that increasing mechanical stress could initiate nascent membrane formation and thought that the stress lay to the outsides of cleavage furrow.
文摘AIM To investigate the application of confocallaser scanning microscopy(CLSM)in tumorpathology and three-dimensional( 3-D )reconstruction by CLSM in pathologic specimensof hepatocellular carcinoma(HCC).METHODS The 30μm thick sections were cutfrom the paraffin-embedded tissues of HCC,hyperplasia and normal liver,stained with DNAfluorescent probe YOYO-1 iodide and examinedby CLSM to collect optical sections of nuclei and3-D images reconstructed.RESULTS HCC displayed chaotic arrangementof carcinoma cell nuclei,marked pleomorphism,indented and irregular nuclear surface,andirregular and coarse chromatin texture.CONCLUSION The serial optical tomograms ofCLSM can be used to create 3-D reconstruction ofcancer cell nuclei.Such 3-D impressions mightbe helpful or even essential in making anaccurate diagnosis.
文摘Using laser scanning confocal microscopy, we have found that the in cells loaded with fluo-3/AM, highest intracellular Ca(2+) in the perinuclear region is associated with the Golgi apparatus. The spatiotemporal subcellu lar distribution of Ca(2+) in living human fibroblasts exposing to calcium-free medium in response to agonists has been investigated. PDGF, which releases Ca(2+) from intracellular stores by inositol(1, 4, 5)-trisphosphate pathway,produced a biphasic transient rise in intracellular calcium.The initial rise was resulted from a direct release of calcium from the Golgi apparatus. Calcium could be also released from and reaccumulated into the Golgi apparatus by the stimulation of thapsigargin, an inhibitor of the Ca(2+) transport ATPase of intracellular calcium store. Permeablizing the plasma membrane by 10 μM digitonin resulted in the calcium release from the Golgi apparatus and depletion of the internal calcium store. These results suggest that the Golgi apparatus plays a role in Ca(2+) regulation in signal transduction.
基金supported by National Key R&D Program of China(grant no.2022YFC2404201)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(grant no.YSBR067).
文摘Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.
文摘The interphase nuclei of parenchyma cells and epidermal cells of garlic ( Allium sativum L.) clove were labelled with rabbit anti_actin antibody and FITC_conjugated goat anti_rabbit IgG antibody. The authors observed results with fluorescence microscopy and confocal laser scanning microscopy. The nuclei showed prominent green_yellow fluorescence, indicating the presence of actin in the nuclei. Fluorescence examination with TRITC_phalloidin showed distinctive red fluorescence in the nuclei, indicating that F_actin is present in the nuclei. Confocal laser scanning microscopy indicated the presence of F_actin containing network structures in the nuclei, but the network structures were absent and the nuclei still showed red fluorescence when the cells were treated with cytochalasin D before fixation; the red fluorescence in the nuclei was hard to be observed when the cells were treated with unlabelled phalloidin before the cells were stained with TRITC_phalloidin. These results indicate that F_actin is in the nuclei and forms network structures in the nuclei of garlic cells.
基金the Tsinghua University Foundation for Basic Research and the Chinese Postdoctoral Foundation.
文摘Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluores-cent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simulta-neously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drug- treating living cells at the level of single cell.
文摘Objective To examine the effects of melatonin on the dynamic changes in the concentration of intracellular free Ca 2+ ([Ca 2+ ]i) in single intact cultured cortical neurons isolated from fetal rats, in order to explore the possible antiaging mechanisms of melatonin (MT) Methods Using the highly fluorescent Ca 2+ sensitive indicator Fluo 3/AM, cortical neurons cultured in a 35?mm Tissue Culture Dish were in incubated for 45?min at room temperature with 5?μmol/L Fluo 3/AM, resulting in proper intracellular dye concentration to provide adequate signal strength for detection and excellent Laser Scanning Confocal Microscopy (LSCM) imaging of [Ca 2+ ]i while not disturbing normal intracellular physiology The changes in fluorescent intensity were monitored by LSCM Results Bay K8644 (10 6 ?mol/L), KCl (20 ?mmol/L), sodium L glutamate (Glu, 50?μmol/L) caused a rapid increase of [Ca 2+ ]i in cortical neurons, and this increase could be significantly attenuated by 10 6 and 10 7 mol/L MT Conclusions MT could antagonize the extracellular Ca 2+ influx, reduce Ca 2+ overload, and have a protective effect on neurons This may be one of the important antiaging mechanisms of MT
文摘Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.
基金supported by the National Natural Science Foundation of China under Grant Nos.51975054,61605140 and 11704028the National Key R&D Program of China(2017YFB1104300)。
文摘Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.
基金This work is supported by the National Natural Science Foundation of China(Nos.21775097 and 21775098)the Fundamental Research Funds for the Central Universities(No.2017TS021).
文摘Main observation and conclusion A single particle-based confocal laser scanning microscopy was developed for the visual detection of copper ions in confined space.A fluorescence microparticle,named AuNCs/ZIF-8,was synthesized by coating gold nanoclusters(AuNCs)onto the outer surface of zeolitic imidazolate framework-8(ZIF-8).
基金The research was performed at the Laser Thermal Laboratory by Drs David J Hwang,Sang-gil Ryu,Eunpa Kim,Jung Bin In,and the current students,Letian Wang,Yoonsoo Rho and Matthew Eliceiri.Professors Andrew M Minor,Junqiao Wu,Oscar D Dubon,Drs Bin Xiang,Frances I Allen,and Changhyun Ko of UCB Materials Science and Engineering,and Dr Carlo Carraro of UCB Chem.Engineering contributed to the work.The research was supported by DARPA/MTO under TBN grant N66001-08-1-2041,the US Department of Energy SBIR grant(DE-FG02-07ER84813),Samsung GRO,and NSF CMMI-1363392.The in situ experiments were performed at the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory,which is supported by the Office of Science,Office of Basic Energy Sciences,Scientific User Facilities Division,of the US Department of Energy under Contract No.DE-AC02-05CH11231.The laser-induced nanowire growth and doping was conducted on the LACVD apparatus in the UC Berkeley Marvell Nanofabrication Laboratory.
文摘This article summarizes work at the Laser Thermal Laboratory and discusses related studies on the laser synthesis and functionalization of semiconductor nanostructures and two-dimensional(2D)semiconductor materials.Research has been carried out on the laser-induced crystallization of thin films and nanostructures.The in situ transmission electron microscopy(TEM)monitoring of the crystallization of amorphous precursors in nanodomains is discussed herein.The directed assembly of silicon nanoparticles and the modulation of their optical properties by phase switching is presented.The vapor-liquid-solid mechanism has been adopted as a bottom-up approach in the synthesis of semiconducting nanowires(NWs).In contrast to furnace heating methods,laser irradiation offers high spatial selectivity and precise control of the heating mechanism in the time domain.These attributes enabled the investigation of NW nucleation and the early stage of nanostructure growth.Site-and shape-selective,on-demand direct integration of oriented NWs was accomplished.Growth of discrete silicon NWs with nanoscale location selectivity by employing near-field laser illumination is also reported herein.Tuning the properties of 2D transition metal dichalcogenides(TMDCs)by modulating the free carrier type,density,and composition can offer an exciting new pathway to various practical nanoscale electronics.In situ Raman probing of laser-induced processing of TMDC flakes was conducted in a TEM instrument.
基金the National Natural Science Foundation of China (Grant Nos. 20574081 and 20490220)973 Program of MOST of China (Grant No. 2003CB 615600)
文摘In this paper,high density polyethylene (HDPE)/poly(ethylene-co-butene) (PEB) blend (50/50 wt%) was prepared through solution blending and then compression molding,and subsequently examined by laser scanning confocal microscopy (LSCM). The PEB used in this experiment was labeled with a small quantity of a fluorescein derivative to render fluorescence. The initial films showed uniform dye dis-tribution and no indication of phase separation within the resolution of optical microscopy. Sample films annealing at 140℃ followed by rapid cooling to room temperature showed obvious phase sepa-ration and bicontinuous structure. The present work indicates that by labeling one component with fluorescein derivative,LSCM can efficiently perform in situ depth profiling of polymer blends.
文摘Surface coatings provide protection to wood products against weathering and other deteriorating factors, such as moisture uptake and microbial invasion. The effectiveness of coatings depends on many factors, including how well the applied coatings adhere to the wood surface. Coating adhesion to wood involves both chemical and physical interactions between the coating and wood tissues in contact, and the particular focus of this mini-review will be on the advances being made in understanding the physical aspects of the interaction by probing wood-coating interface using novel and high resolution imaging techniques, including confocal laser scanning microscopy (CLSM), SEM-backscattered electron imaging and correlative microscopy employing light, confocal and scanning electron microscopy.
基金Ministry of Science and Technology of China(Grant No.2012AA022501,2012CB720604)the National Natural Science Foundation of China(Grant No.20932001,81302626)
文摘Investigation intracellular trafficking of siRNAs following their delivery to cells is of great interest to elucidate dynamics of siRNA in cytoplasm. In this study, we present a novel confocal laser scanning microscopy (CLSM) method to evaluate a novel delivery system of 3'-peptide-siRNA therapeutic, which was named 3'-pAs-siRNA/CLD. This method could not only calculate the content of the intracellular 3'-peptide-siRNA, but also quantify its co-localization with cellular substructure. We observed that 3'-pAs-siRNA/CLD, which provided the better antitumor capability, also had a better cell uptake, endosome escape and a longer retention time in A375. This novel strategy was proved to be efficient, quantified and visualized, thus making the dynamics research of siRNA in cytoplasm clear and simplified.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20272 and52074073)the Fundamental Research Funds for the Central Universities(No.2325035)。
文摘To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)contents(0-10wt%),and scanning electron microscopy was performed to study the interfacial reaction between Al_(2)O_(3)and this slag system.The results disclose that the dissolution of Al_(2)O_(3)inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions.In TiO_(2)-bearing and TiO_(2)-free ladle slags,there is no difference in the dissolution mechanism of Al_(2)O_(3)inclusions at steelmaking temperatures.Boundary layer diffusion is found as the controlling step of the dissolution of Al_(2)O_(3),and the diffusion coefficient is in the range of 4.18×10^(-10)to 2.18×10^(-9)m^(2)/s at 1450-1500℃.Compared with the solubility of Al_(2)O_(3)in the slags,slag viscosity and temperature play a more profound role in the dissolution of Al_(2)O_(3)inclusions.A lower viscosity and a lower melting point of the slags are beneficial for the dissolution.Suitable addition of TiO_(2)(e.g.,5wt%)in ladle slags can enhance the dissolution of Al_(2)O_(3)inclusions because of the low viscosity and melting point of the slags,while excessive addition of TiO_(2)(e.g.,10wt%)shows the opposite trend.
基金supported by the Key Scientific and Technological Research Projects of Henan Province (Grant No. 202102110133)Special Innovation Fund of Henan Agricultural University (Grant No. KJCX2019C04)。
文摘Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.