When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response...When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site.展开更多
Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we invest...Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.展开更多
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua...The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.展开更多
A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent manageme...A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surfac...The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surface is covered with soft sand, called regolith, and it is required to protect lunar bases and structures, as well as internal precision equipment, against vibrational disturbances such as moonquakes and meteorite collisions. Therefore, in this study, the static and cyclic triaxial compression tests of the regolith simulant were conducted. The reference strain and equivalent damping factor of the regolith simulant were smaller compared to sandy soil on Earth. In addition, a shaking table test using model specimens was conducted on the response properties of regolith ground alone and structures set on regolith ground. The buried foundation and pile foundation notably suppressed the horizontal response attributed to the rocking component compared to a direct foundation.展开更多
To study ice-induced vibration of a compliant conical structure, a series of model tests were performed from 2004 to 2005. In the tests, the ice sheet before the compliant conical structure was found to fail in two-ti...To study ice-induced vibration of a compliant conical structure, a series of model tests were performed from 2004 to 2005. In the tests, the ice sheet before the compliant conical structure was found to fail in two-time breaking. From 2005 to 2006, this type of ice failure was studied through more groups of tests. The tests show that two-time breaking is the typical failure of ice before steep conical structures, and is controlled by other factors at the same time, such as ice speed and the angle of the cone.展开更多
Studies on landslides by the 2008 Wenchuan earthquake showed that topography was of great importance in amplifying the seismic shaking, and among other factors, lithology and slope structure controlled the spatial occ...Studies on landslides by the 2008 Wenchuan earthquake showed that topography was of great importance in amplifying the seismic shaking, and among other factors, lithology and slope structure controlled the spatial occurrence of slope failures. The present study carried out experiments on four rock slopes with steep angle of 60° by means of a shaking table. The recorded Wenchuan earthquake waves were scaled to excite the model slopes. Measurements from accelerometers installed on free surface of the model slope were analyzed, with much effort on timedomain acceleration responses to horizontal components of seismic shaking. It was found that the amplification factor of peak horizontal acceleration, RPHA, was increasing with elevation of each model slope, though the upper and lower halves of the slope exhibited different increasing patterns. As excitation intensity was increased, the drastic deterioration of the inner structure of each slope caused the sudden increase of RPHA in the upper slope part. In addition, the model simulating the soft rock slope produced the larger RPHA than the model simulating the hard rock slope by a maximum factor of 2.6. The layered model slope also produced the larger RPHA than the homogeneous model slope by a maximum factor of 2.7. The upper half of a slope was influenced more seriously by the effect of lithology, while the lower half was influenced more seriously by the effect of slope structure.展开更多
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building w...Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building.展开更多
For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to b...For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to be failed in two-time breaking.Based on this important finding,model tests study of the ice force on a compliant multi-cone structure were performed from 2006 to 2007.In these tests,the ice sheet broke before each single cone non-simultaneously.The exciting energy of the total ice force was found to be in a wide range of frequencies,and the structure can be easily excited with nonlinear resonance.展开更多
The problem of ice induced vibration is common to ocean engineering of cold region countries. To study the ice induced vibration of a compliant conical structure, a series of model tests have been performed and some b...The problem of ice induced vibration is common to ocean engineering of cold region countries. To study the ice induced vibration of a compliant conical structure, a series of model tests have been performed and some breakthrough progresses made. The ice sheet before the compliant conical structure is found to fail by two-time breaking in the tests. The process of two-time breaking behaves in two modes, and the general control of the ice and structural conditions determine the mode in which the ice force would behave. Two dynamic ice force functions are established respectively for the two modes of two-time breaking process in this paper. The numerical simulation results are in good agreement with the measured results, indicating that the dynamic ice force functions given in this paper can fully reflect the real situation of the dynamic ice force on a compliant conical structure.展开更多
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very...The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.展开更多
Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure o...Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure on soft site,and analyze its isolation effect.Test results show that the test can reflect the earthquake response characteristics of isolated structure on soft site.It is on soft site that the dynamic characteristics of isolated structure,acceleration magnification factor(AMF)of isolated structure and isolation efficiency of the isolation layer differ from those on rigid foundation with an soil-structure interaction(SSI)effect,represented by the reduction in fundamental vibration frequency of isolated structure and the increase of damping ratio with changes of the SSI effect.SSI can either increase or decrease AMF of isolated structure on soft site,depending on the characteristics of earthquake motion input.Furthermore,the isolation efficiency of isolation layer on soft site is decreased with the SSI effect,which is related to the peak ground acceleration(PGA)and the characteristics of earthquake motion input.展开更多
Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simpl...Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simple structure, low cost and easy layout, therefore it has become a research hotspot in recent years. In this paper, the multimode fiber with large core is used for manufacturing SMS structure with high sensitivity. Firstly, the multimode fiber with core/cladding diameters of 105/ 125 jitm has access to the system by means of single mode optical fiber. Secondly, SMS device structure is manufactured by welding the eccentric shaft of multimode optical fiber. Afterwards, mode interference effect and spectral response characteristics of the structure of single mode-multimode-single mode optical fiber are analyzed theoretically. Finally, with the help of a wide spectrum light source and a spectrum analyzer, the transmission spectra characteristics of SMS optical fiber with strain is tested. By observing the curve that the wave changes with stress, the sensitivity is calculated and it is consistent with theoretical value .展开更多
An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy....An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.To optimize the design,an efficient optimization scheme is applied to improve the simulation efficiency.An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38,which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV,as a high gradient up to 50 MV/m is required.A special design involving a dual-feed coupler eliminates the dipole field effect.This paper presents all the details pertaining to the design,fabrication,and cold test results of the S-band high-gradient accelerating structure.展开更多
To implement the Tsinghua Thomson Scattering X-ray Source upgrade plan and the Very Compact Inverse Compton Scattering Gamma-ray Source (VIGAS) program, a new 1.5-m traveling-wave accelerating structure was designed t...To implement the Tsinghua Thomson Scattering X-ray Source upgrade plan and the Very Compact Inverse Compton Scattering Gamma-ray Source (VIGAS) program, a new 1.5-m traveling-wave accelerating structure was designed to replace the old 3-m SLAC-type structure with the aim of increasing the accelerating gradient from15 to 30 MV/m. The new type of structure works in the 3π/4 mode with a comparatively low group velocity varying from 0.007c to 0.003c to increase the accelerating gradient at a given power. An elliptical iris was employed to reduce the surface field enhancement. The filling process of the low-group-velocity structure was analyzed using a circuit model. After fabrication, the structure was precisely tuned using the non-contact tuning method, followed by detailed low-power radiofrequency measurements. The structure was first installed and utilized at a beamline for the terahertz experiment at Tsinghua University. After 120 h of conditioning, it is now operating at a gradient of 24.2 MV/m and a 20.7-MW input power, with the klystron operating at its full power. It is expected to generate an accelerating gradient of 30 MV/m when the klystron power is upgraded to 30 MW in the near future.展开更多
A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture str...A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture strength and elongation of the specimen were 946 MPa and 24.7%,respectively.At present,the research on microstructure of bimodal 2205 DSS at room temperature(RT)mainly depended on scanning electron microscope(SEM)observation after loading experiments.The test result indicates that there are two different yield stages in stress-strain curve of specimen during tensile process.The microstructure of duplex bimodal structured stainless steel consists of two pairs of soft hard regions and phases.By studying deformation mechanism of bimodal structured stainless steel,the interaction between soft phase and hard phase are discussed.The principle of composition design and microstructure control of typical duplex stainless steel is obtained,which provides an important research basis for designing of advanced duplex stainless steel.展开更多
X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsi...X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.展开更多
Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shie...Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.展开更多
基金National Natural Science Foundation of China under Grant No.52078020。
文摘When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site.
基金supported by the National Natural Science Foundation of China(No.11922504).
文摘Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2907600)the National Natural Science Foundation of China(Grant Nos.42277174 and 52204260).
文摘The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.
文摘A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
文摘The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surface is covered with soft sand, called regolith, and it is required to protect lunar bases and structures, as well as internal precision equipment, against vibrational disturbances such as moonquakes and meteorite collisions. Therefore, in this study, the static and cyclic triaxial compression tests of the regolith simulant were conducted. The reference strain and equivalent damping factor of the regolith simulant were smaller compared to sandy soil on Earth. In addition, a shaking table test using model specimens was conducted on the response properties of regolith ground alone and structures set on regolith ground. The buried foundation and pile foundation notably suppressed the horizontal response attributed to the rocking component compared to a direct foundation.
基金This project is financially supported by the National High Technology Research Development Program of China(863Program) by the National Natural Science Foundation of China(Grant No.50609015)
文摘To study ice-induced vibration of a compliant conical structure, a series of model tests were performed from 2004 to 2005. In the tests, the ice sheet before the compliant conical structure was found to fail in two-time breaking. From 2005 to 2006, this type of ice failure was studied through more groups of tests. The tests show that two-time breaking is the typical failure of ice before steep conical structures, and is controlled by other factors at the same time, such as ice speed and the angle of the cone.
基金financially supported by the National Basic Research Program "973" Project of the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2013CB733200)the National Science Found for Distinguished Young Scholars of China (Grant No. 41225011)the Chang Jiang Scholars Program of China and the open fund on "Research on largescale landslides triggered by the Wenchuan earthquake" provided by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection
文摘Studies on landslides by the 2008 Wenchuan earthquake showed that topography was of great importance in amplifying the seismic shaking, and among other factors, lithology and slope structure controlled the spatial occurrence of slope failures. The present study carried out experiments on four rock slopes with steep angle of 60° by means of a shaking table. The recorded Wenchuan earthquake waves were scaled to excite the model slopes. Measurements from accelerometers installed on free surface of the model slope were analyzed, with much effort on timedomain acceleration responses to horizontal components of seismic shaking. It was found that the amplification factor of peak horizontal acceleration, RPHA, was increasing with elevation of each model slope, though the upper and lower halves of the slope exhibited different increasing patterns. As excitation intensity was increased, the drastic deterioration of the inner structure of each slope caused the sudden increase of RPHA in the upper slope part. In addition, the model simulating the soft rock slope produced the larger RPHA than the model simulating the hard rock slope by a maximum factor of 2.6. The layered model slope also produced the larger RPHA than the homogeneous model slope by a maximum factor of 2.7. The upper half of a slope was influenced more seriously by the effect of lithology, while the lower half was influenced more seriously by the effect of slope structure.
基金National Natural Science Foundation of China Under Grant No. 50708071National Basic Research of China Under Grant No. 2007CB714202+1 种基金National Key Technology R&D Program Under Grant No. 2006BAJ13B01Shanghai Educational Development Foundation Under Grant No. 2007CG27
文摘Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building.
基金supported bythe National High Technology Research and Development Program of China(863Program,Grant No.2003AA602150-3)the National Natural Science Foundation of China(Grant No.50609015)
文摘For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to be failed in two-time breaking.Based on this important finding,model tests study of the ice force on a compliant multi-cone structure were performed from 2006 to 2007.In these tests,the ice sheet broke before each single cone non-simultaneously.The exciting energy of the total ice force was found to be in a wide range of frequencies,and the structure can be easily excited with nonlinear resonance.
文摘The problem of ice induced vibration is common to ocean engineering of cold region countries. To study the ice induced vibration of a compliant conical structure, a series of model tests have been performed and some breakthrough progresses made. The ice sheet before the compliant conical structure is found to fail by two-time breaking in the tests. The process of two-time breaking behaves in two modes, and the general control of the ice and structural conditions determine the mode in which the ice force would behave. Two dynamic ice force functions are established respectively for the two modes of two-time breaking process in this paper. The numerical simulation results are in good agreement with the measured results, indicating that the dynamic ice force functions given in this paper can fully reflect the real situation of the dynamic ice force on a compliant conical structure.
基金National Natural Science Foundation of China Under Grant No.59778027State Key Laboratory of Coastal Offshore EngineeringDalian University of Technology Under Grant No.9702
文摘The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.
基金supported by the Jiangsu Natural Science Foundation of China(Grant No.BK2012477)the Science Research Foundation of Nanjing Institute of Technology(CKJA201505,JCYJ201618)
文摘Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure on soft site,and analyze its isolation effect.Test results show that the test can reflect the earthquake response characteristics of isolated structure on soft site.It is on soft site that the dynamic characteristics of isolated structure,acceleration magnification factor(AMF)of isolated structure and isolation efficiency of the isolation layer differ from those on rigid foundation with an soil-structure interaction(SSI)effect,represented by the reduction in fundamental vibration frequency of isolated structure and the increase of damping ratio with changes of the SSI effect.SSI can either increase or decrease AMF of isolated structure on soft site,depending on the characteristics of earthquake motion input.Furthermore,the isolation efficiency of isolation layer on soft site is decreased with the SSI effect,which is related to the peak ground acceleration(PGA)and the characteristics of earthquake motion input.
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in ShanxiProgram for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simple structure, low cost and easy layout, therefore it has become a research hotspot in recent years. In this paper, the multimode fiber with large core is used for manufacturing SMS structure with high sensitivity. Firstly, the multimode fiber with core/cladding diameters of 105/ 125 jitm has access to the system by means of single mode optical fiber. Secondly, SMS device structure is manufactured by welding the eccentric shaft of multimode optical fiber. Afterwards, mode interference effect and spectral response characteristics of the structure of single mode-multimode-single mode optical fiber are analyzed theoretically. Finally, with the help of a wide spectrum light source and a spectrum analyzer, the transmission spectra characteristics of SMS optical fiber with strain is tested. By observing the curve that the wave changes with stress, the sensitivity is calculated and it is consistent with theoretical value .
基金This work was supported by the Alliance of International Science Organizations(No.ANSO-CR-KP-2020-16).
文摘An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.To optimize the design,an efficient optimization scheme is applied to improve the simulation efficiency.An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38,which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV,as a high gradient up to 50 MV/m is required.A special design involving a dual-feed coupler eliminates the dipole field effect.This paper presents all the details pertaining to the design,fabrication,and cold test results of the S-band high-gradient accelerating structure.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11922504 and 12027902).
文摘To implement the Tsinghua Thomson Scattering X-ray Source upgrade plan and the Very Compact Inverse Compton Scattering Gamma-ray Source (VIGAS) program, a new 1.5-m traveling-wave accelerating structure was designed to replace the old 3-m SLAC-type structure with the aim of increasing the accelerating gradient from15 to 30 MV/m. The new type of structure works in the 3π/4 mode with a comparatively low group velocity varying from 0.007c to 0.003c to increase the accelerating gradient at a given power. An elliptical iris was employed to reduce the surface field enhancement. The filling process of the low-group-velocity structure was analyzed using a circuit model. After fabrication, the structure was precisely tuned using the non-contact tuning method, followed by detailed low-power radiofrequency measurements. The structure was first installed and utilized at a beamline for the terahertz experiment at Tsinghua University. After 120 h of conditioning, it is now operating at a gradient of 24.2 MV/m and a 20.7-MW input power, with the klystron operating at its full power. It is expected to generate an accelerating gradient of 30 MV/m when the klystron power is upgraded to 30 MW in the near future.
基金Funded by the National Natural Science Foundation of China(No.51911530119)the Department of Education of Gansu Province Innovation Fund(No.2021A-023)the Open Fund Project of Key Laboratory of Solar Power System Engineering Project(No.2022SPKL01)。
文摘A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture strength and elongation of the specimen were 946 MPa and 24.7%,respectively.At present,the research on microstructure of bimodal 2205 DSS at room temperature(RT)mainly depended on scanning electron microscope(SEM)observation after loading experiments.The test result indicates that there are two different yield stages in stress-strain curve of specimen during tensile process.The microstructure of duplex bimodal structured stainless steel consists of two pairs of soft hard regions and phases.By studying deformation mechanism of bimodal structured stainless steel,the interaction between soft phase and hard phase are discussed.The principle of composition design and microstructure control of typical duplex stainless steel is obtained,which provides an important research basis for designing of advanced duplex stainless steel.
基金supported by the National Natural Science Foundation of China (Nos. 11922504 and 12027902)
文摘X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.
基金Joint Funds of National Natural Science Foundation of China(No.U1134208)National Key Basic Research Program of China(No.2010CB732105)National Natural Science Foundation of China(No.50925830,No.51208432)
文摘Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.