In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive...In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive matched filter(AMF)detector and the enhanced RAO(EnRAO)detector.The new detector has constant false alarm performance,and the closed-form expression of probability of false alarm and probability of detection is derived.The performance of the new detector is assessed,and analyzed in comparison with other detectors.The results show that,the proposed detector can provide enhanced rejection capability in the case of mismatch,but the performance of the detector is slightly lost under the condition of matching.展开更多
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and d...A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).展开更多
A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homo...A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.展开更多
To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors such as lack of prior knowledge on recognition results,researchers have gradually adopted deep learning...To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors such as lack of prior knowledge on recognition results,researchers have gradually adopted deep learning techniques to replace traditional modulated signal processing techniques.To address the problem of low recognition accuracy of the modulated signal at low signal-to-noise ratios,we have designed a novel modulation recognition network of multi-scale analysis with deep threshold noise elimination to recognize the actually collected modulated signals under a symmetric cross-entropy function of label smoothing.The network consists of a denoising encoder with deep adaptive threshold learning and a decoder with multi-scale feature fusion.The two modules are skip-connected to work together to improve the robustness of the overall network.Experimental results show that this method has better recognition accuracy at low signal-to-noise ratios than previous methods.The network demonstrates a flexible self-learning capability for different noise thresholds and the effectiveness of the designed feature fusion module in multi-scale feature acquisition for various modulation types.展开更多
基金supported by the National Natural Science Foundation of China(No.61971412).
文摘In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive matched filter(AMF)detector and the enhanced RAO(EnRAO)detector.The new detector has constant false alarm performance,and the closed-form expression of probability of false alarm and probability of detection is derived.The performance of the new detector is assessed,and analyzed in comparison with other detectors.The results show that,the proposed detector can provide enhanced rejection capability in the case of mismatch,but the performance of the detector is slightly lost under the condition of matching.
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
基金supported by the National Natural Science Foundation of China(609250056110216961501505)
文摘A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).
基金supported by the National Natural Science Foundation of China(61102158)the China Postdoctoral Science Foundation(2011M500667)
文摘A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.
基金Project supported by the National Key R&D Program of China(No.2020YFF01015000ZL)the Fundamental Research Funds for the Central Universities,China(No.3072022CF0806)。
文摘To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors such as lack of prior knowledge on recognition results,researchers have gradually adopted deep learning techniques to replace traditional modulated signal processing techniques.To address the problem of low recognition accuracy of the modulated signal at low signal-to-noise ratios,we have designed a novel modulation recognition network of multi-scale analysis with deep threshold noise elimination to recognize the actually collected modulated signals under a symmetric cross-entropy function of label smoothing.The network consists of a denoising encoder with deep adaptive threshold learning and a decoder with multi-scale feature fusion.The two modules are skip-connected to work together to improve the robustness of the overall network.Experimental results show that this method has better recognition accuracy at low signal-to-noise ratios than previous methods.The network demonstrates a flexible self-learning capability for different noise thresholds and the effectiveness of the designed feature fusion module in multi-scale feature acquisition for various modulation types.