One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enha...One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enhanced Thematic Mapper) image and the National Oceanic and Atmospheric Administration/the advanced very high resolution radiometer (NOAA/AVHRR) image were integrated to detect, simulate and analyze the vegetation fractional coverage of typical steppe in northern China. The results show: (1) Vegetation fractional coverage measured by digital camera is more precise than results measured by other methods. It can be used to validate other measuring results. (2) Vegetation fractional coverage measured by 1 m 2 field sample change fluctuantly for different observers and for different sample areas. In this experiment, the coverage is generally high compared with the result measured by digital camera, and the average absolute error is 9.92%, but two groups measure results, correlation coefficient r(2) = 0.89. (3) Three kinds of methods using remotely sensed data were adopted to simulate the vegetation fractional coverage. Average absolute errors of the vegetation fractional coverage, measured by ETM+ and NOAA, are respectively 7.03% and 7.83% compared with the result measured by digital camera. When NOAA pixel was decomposed by ETM+ pixels after geometrical registry, the average absolute errors measured by this method is 5.68% compared with the digital camera result. Correction coefficients of three results with digital camera result r(2) are respectively 0.78, 0.61 and 0.76. (4) The result of statistic model established by NOAA-NDVI (NDVI, Normalized Difference Vegetation Index) and the vegetation fractional coverage measured by digital camera show lower precision (r(2) = 0.65) than the result of statistic model established by ETM+-NDVI and digital camera coverage then converted to NOAA image (r(2) = 0.80). Pixel decomposability method improves the precision of measuring the vegetation fractional coverage on a large scale. This is a significant practice on scaling by using remotely sensed data. Integrated application of multi-scale remotely sensed data in earth observation will be an important approach to promoting measuring precision of ecological parameters.展开更多
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster...Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.展开更多
With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to th...With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.展开更多
In this article, the extension to three dimensions (3D) of the blending technique that has been widely used in two dimensions (2D) to calibrate ocean chlorophyll is presented. The results thus obtained revealed a very...In this article, the extension to three dimensions (3D) of the blending technique that has been widely used in two dimensions (2D) to calibrate ocean chlorophyll is presented. The results thus obtained revealed a very high degree of efficiency when predicting observed values of ocean chlorophyll. The mean squared difference between the predicted and observed values of ocean chlorophyll when 3D technique was used fell far below the tolerance level which was set to the difference between satellite and observed in-situ values. The resulting blended field did not only provide better predictions of the in situ observations in areas where bottle samples cannot be obtained but also provided a smooth variation of the distribution of ocean chlorophyll throughout the year. An added advantage is its computational efficiency since data that would have been treated at least four times would be treated only once. With the advent of these results, it is believed that the modelling of the ocean life cycle will become more realistic.展开更多
This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional...This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.展开更多
An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the ...An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the input layer depends on the dimensionality of input patterns. The number of neurons in the output layer equals the number of the desired classes. The number of neurons in the Kohonen layer may be a few to several thousands, which depends on the complexity of classification problems and the classification precision. Each training sample is expressed by a pair of vectors : an input vector and a class codebook vector. When a training sample is input into the model, Kohonen's competitive learning rule is applied to selecting the winning neuron from the Kohouen layer and the weight coefficients connecting all the neurons in the input layer with both the winning neuron and its neighbors in the Kohonen layer are modified to be closer to the input vector, and those connecting all the neurons around the winning neuron within a certain diameter in the Kohonen layer with all the neurons in the output layer are adjusted to be closer to the class codebook vector. If the number of training sam- ples is sufficiently large and the learning epochs iterate enough times, the model will be able to serve as a supervised classifier. The model has been tentatively applied to the supervised classification of multispectral remotely sensed data. The author compared the performances of the extended SOM and BPN in remotely sensed data classification. The investigation manifests that the extended SOM is feasible for supervised classification.展开更多
We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-r...We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.展开更多
Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Re...Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Regression Tree (BRT) can address Big Data challenges to drive decision making. The challenge of this study is lack of interoperability since the data, a collection of GIS shapefiles, remotely sensed imagery, and aggregated and interpolated spatio-temporal information, are stored in monolithic hardware components. For the modelling process, it was necessary to create one common input file. By merging the data sources together, a structured but noisy input file, showing inconsistencies and redundancies, was created. Here, it is shown that BRT can process different data granularities, heterogeneous data and missingness. In particular, BRT has the advantage of dealing with missing data by default by allowing a split on whether or not a value is missing as well as what the value is. Most importantly, the BRT offers a wide range of possibilities regarding the interpretation of results and variable selection is automatically performed by considering how frequently a variable is used to define a split in the tree. A comparison with two similar regression models (Random Forests and Least Absolute Shrinkage and Selection Operator, LASSO) shows that BRT outperforms these in this instance. BRT can also be a starting point for sophisticated hierarchical modelling in real world scenarios. For example, a single or ensemble approach of BRT could be tested with existing models in order to improve results for a wide range of data-driven decisions and applications.展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigati...Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1.展开更多
China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this pap...China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.展开更多
Big data with its vast volume and complexity is increasingly concerned, developed and used for all professions and trades. Remote sensing, as one of the sources for big data, is generating earth-observation data and a...Big data with its vast volume and complexity is increasingly concerned, developed and used for all professions and trades. Remote sensing, as one of the sources for big data, is generating earth-observation data and analysis results daily from the platforms of satellites, manned/unmanned aircrafts, and ground-based structures. Agricultural remote sensing is one of the backbone technologies for precision agriculture, which considers within-field variability for site-specific management instead of uniform management as in traditional agriculture. The key of agricultural remote sensing is, with global positioning data and geographic information, to produce spatially-varied data for subsequent precision agricultural operations. Agricultural remote sensing data, as general remote sensing data, have all characteristics of big data. The acquisition, processing, storage, analysis and visualization of agricultural remote sensing big data are critical to the success of precision agriculture. This paper overviews available remote sensing data resources, recent development of technologies for remote sensing big data management, and remote sensing data processing and management for precision agriculture. A five-layer-fifteen- level (FLFL) satellite remote sensing data management structure is described and adapted to create a more appropriate four-layer-twelve-level (FLTL) remote sensing data management structure for management and applications of agricultural remote sensing big data for precision agriculture where the sensors are typically on high-resolution satellites, manned aircrafts, unmanned aerial vehicles and ground-based structures. The FLTL structure is the management and application framework of agricultural remote sensing big data for precision agriculture and local farm studies, which outlooks the future coordination of remote sensing big data management and applications at local regional and farm scale.展开更多
This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the mod...This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the modeling of forest properties is site specific and highly uncertain, thus further study is encouraged. In this study we used 1460 sampling plots collected in 16 transects measuring tree diameter (DBH) and other forest properties which were useful for the biomass assessment. The study was carded out in tropical forest region in East Kalimantan, Indo- nesia. The AGB density was estimated applying an existing DBH - biomass equation. The estimate was superimposed over the modified GIS map of the study area, and the biomass density of each land cover was calculated. The RS approach was performed using a subset of sample data to develop the AGB and stem volume linear equation models. Pearson correlation statistics test was conducted using ETM bands reflectance, vegetation indices, image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. Two linear models were generated from the significant RS data. To analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000 and 2003 were preprocessed, classified using maximum likelihood method, and filtered with the majority analysis. We found 158±16 m^3.ha^-1 of stem volume and 168±15 t.ha^-1 of AGB estimated from RS approach, whereas the field measurement and GIS estimated 157±92 m^3.ha^-1 and 167±94 t.ha^-1 of stem volume and AGB, respectively. The dynamics of biomass abundance from 2000 to 2003 were assessed from multi temporal ETM data and we found a slightly declining trend of total biomass over these periods. Remote sensing approach estimated lower biomass abundance than did the GIS and field measurement data. The earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while the later estimated 11.9 Gt and 11.6 Gt of total biomasses, respectively. We found that GLCM mean texture features showed markedly strong correlations with stem volume and biomass.展开更多
This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lin...This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lines between land objects and water objects. Numerical algorithms have been identified and de-vised to segment and classify remote sensing imagery and LiDAR data into land and water pixels, to form and enhance land and water objects, and to trace and vectorize the boundaries between land and water ob-jects as shoreline features. A contouring routine is developed as an alternative method for extracting shore-line features from LiDAR data. While most of numerical algorithms are implemented using C++ program-ming language, some algorithms use available functions of ArcObjects in ArcGIS. Based on VB .NET and ArcObjects programming, a graphical user’s interface has been developed to integrate and organize shoreline extraction routines into a software package. This product represents the first comprehensive software tool dedicated for extracting shorelines from remotely sensed data. Radarsat SAR image, QuickBird multispectral image, and airborne LiDAR data have been used to demonstrate how these software routines can be utilized and combined to extract shoreline features from different types of input data sources: panchromatic or single band imagery, color or multi-spectral image, and LiDAR elevation data. Our software package is freely available for the public through the internet.展开更多
Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by ...Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by desertification. According to the configuration and ecotope of the earths surface, the coverage of vegetation, occupation ratio of bare sandy land and the soil texture were selected as evaluation indexes by using the field investigation data. The evaluation index system of Keerqin sandy desertification was established by using Remote Sensing data. and the occupation ratio of bare sandy land was obtained by mixed spectrum model. This index system is validated by the field investioation data and results indicate that it is suitable for the desertification evaluation of Keerqin.Foundation Item: This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192)展开更多
Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions.It is challenging to determine vegetation using traditional map classification approaches.The primary issue i...Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions.It is challenging to determine vegetation using traditional map classification approaches.The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties.It is more demandable to determine the multiple spectral ana-lyses for improving the accuracy of vegetation mapping through remotely sensed images.The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping.The architecture comprises three approaches,feature-based approach,region-based approach,and texture-based approach for classifying the vegetation area.The novel Deep Meta fusion model(DMFM)is created with a unique fusion frame-work of residual stacking of convolution layers with Unique covariate features(UCF),Intensity features(IF),and Colour features(CF).The overhead issues in GPU utilization during Convolution neural network(CNN)models are reduced here with a lightweight architecture.The system considers detailing feature areas to improve classification accuracy and reduce processing time.The proposed DMFM model achieved 99%accuracy,with a maximum processing time of 130 s.The training,testing,and validation losses are degraded to a significant level that shows the performance quality with the DMFM model.The system acts as a standard analysis platform for dynamic datasets since all three different fea-tures,such as Unique covariate features(UCF),Intensity features(IF),and Colour features(CF),are considered very well.展开更多
Objective: To correlate climatic and environmental factors such as land surface temperature, rainfall, humidity and normalized difference vegetation index with the incidence of dengue to develop prediction models for ...Objective: To correlate climatic and environmental factors such as land surface temperature, rainfall, humidity and normalized difference vegetation index with the incidence of dengue to develop prediction models for the Philippines using remote-sensing data.Methods: Timeseries analysis was performed using dengue cases in four regions of the Philippines and monthly climatic variables extracted from Global Satellite Mapping of Precipitation for rainfall, and MODIS for the land surface temperature and normalized difference vegetation index from 2008-2015.Consistent dataset during the period of study was utilized in Autoregressive Integrated Moving Average models to predict dengue incidence in the four regions being studied.Results: The best-fitting models were selected to characterize the relationship between dengue incidence and climate variables.The predicted cases of dengue for January to December 2015 period fitted well with the actual dengue cases of the same timeframe.It also showed significantly good linear regression with a square of correlation of 0.869 5 for the four regions combined.Conclusion: Climatic and environmental variables are positively associated with dengue incidence and suit best as predictor factors using Autoregressive Integrated Moving Average models.This finding could be a meaningful tool in developing an early warning model based on weather forecasts to deliver effective public health prevention and mitigation programs.展开更多
Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Theref...Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years.展开更多
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great...The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.展开更多
At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from a...At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.展开更多
文摘One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enhanced Thematic Mapper) image and the National Oceanic and Atmospheric Administration/the advanced very high resolution radiometer (NOAA/AVHRR) image were integrated to detect, simulate and analyze the vegetation fractional coverage of typical steppe in northern China. The results show: (1) Vegetation fractional coverage measured by digital camera is more precise than results measured by other methods. It can be used to validate other measuring results. (2) Vegetation fractional coverage measured by 1 m 2 field sample change fluctuantly for different observers and for different sample areas. In this experiment, the coverage is generally high compared with the result measured by digital camera, and the average absolute error is 9.92%, but two groups measure results, correlation coefficient r(2) = 0.89. (3) Three kinds of methods using remotely sensed data were adopted to simulate the vegetation fractional coverage. Average absolute errors of the vegetation fractional coverage, measured by ETM+ and NOAA, are respectively 7.03% and 7.83% compared with the result measured by digital camera. When NOAA pixel was decomposed by ETM+ pixels after geometrical registry, the average absolute errors measured by this method is 5.68% compared with the digital camera result. Correction coefficients of three results with digital camera result r(2) are respectively 0.78, 0.61 and 0.76. (4) The result of statistic model established by NOAA-NDVI (NDVI, Normalized Difference Vegetation Index) and the vegetation fractional coverage measured by digital camera show lower precision (r(2) = 0.65) than the result of statistic model established by ETM+-NDVI and digital camera coverage then converted to NOAA image (r(2) = 0.80). Pixel decomposability method improves the precision of measuring the vegetation fractional coverage on a large scale. This is a significant practice on scaling by using remotely sensed data. Integrated application of multi-scale remotely sensed data in earth observation will be an important approach to promoting measuring precision of ecological parameters.
基金supported by the National Key Research and Development Program of China(2020YFC1512304).
文摘Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.
基金National Natural Science Foundation of China(Nos.42371406,42071441,42222106,61976234).
文摘With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.
文摘In this article, the extension to three dimensions (3D) of the blending technique that has been widely used in two dimensions (2D) to calibrate ocean chlorophyll is presented. The results thus obtained revealed a very high degree of efficiency when predicting observed values of ocean chlorophyll. The mean squared difference between the predicted and observed values of ocean chlorophyll when 3D technique was used fell far below the tolerance level which was set to the difference between satellite and observed in-situ values. The resulting blended field did not only provide better predictions of the in situ observations in areas where bottle samples cannot be obtained but also provided a smooth variation of the distribution of ocean chlorophyll throughout the year. An added advantage is its computational efficiency since data that would have been treated at least four times would be treated only once. With the advent of these results, it is believed that the modelling of the ocean life cycle will become more realistic.
文摘This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.
基金Supported by National Natural Science Foundation of China (No. 40872193)
文摘An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the input layer depends on the dimensionality of input patterns. The number of neurons in the output layer equals the number of the desired classes. The number of neurons in the Kohonen layer may be a few to several thousands, which depends on the complexity of classification problems and the classification precision. Each training sample is expressed by a pair of vectors : an input vector and a class codebook vector. When a training sample is input into the model, Kohonen's competitive learning rule is applied to selecting the winning neuron from the Kohouen layer and the weight coefficients connecting all the neurons in the input layer with both the winning neuron and its neighbors in the Kohonen layer are modified to be closer to the input vector, and those connecting all the neurons around the winning neuron within a certain diameter in the Kohonen layer with all the neurons in the output layer are adjusted to be closer to the class codebook vector. If the number of training sam- ples is sufficiently large and the learning epochs iterate enough times, the model will be able to serve as a supervised classifier. The model has been tentatively applied to the supervised classification of multispectral remotely sensed data. The author compared the performances of the extended SOM and BPN in remotely sensed data classification. The investigation manifests that the extended SOM is feasible for supervised classification.
文摘We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.
文摘Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Regression Tree (BRT) can address Big Data challenges to drive decision making. The challenge of this study is lack of interoperability since the data, a collection of GIS shapefiles, remotely sensed imagery, and aggregated and interpolated spatio-temporal information, are stored in monolithic hardware components. For the modelling process, it was necessary to create one common input file. By merging the data sources together, a structured but noisy input file, showing inconsistencies and redundancies, was created. Here, it is shown that BRT can process different data granularities, heterogeneous data and missingness. In particular, BRT has the advantage of dealing with missing data by default by allowing a split on whether or not a value is missing as well as what the value is. Most importantly, the BRT offers a wide range of possibilities regarding the interpretation of results and variable selection is automatically performed by considering how frequently a variable is used to define a split in the tree. A comparison with two similar regression models (Random Forests and Least Absolute Shrinkage and Selection Operator, LASSO) shows that BRT outperforms these in this instance. BRT can also be a starting point for sophisticated hierarchical modelling in real world scenarios. For example, a single or ensemble approach of BRT could be tested with existing models in order to improve results for a wide range of data-driven decisions and applications.
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.
基金National Natural Sci-ence Foundation of China (Grant No. 39900084) and KZCX1-10-07.
文摘Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1.
文摘China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.
基金financially supported by the funding appropriated from USDA-ARS National Program 305 Crop Productionthe 948 Program of Ministry of Agriculture of China (2016-X38)
文摘Big data with its vast volume and complexity is increasingly concerned, developed and used for all professions and trades. Remote sensing, as one of the sources for big data, is generating earth-observation data and analysis results daily from the platforms of satellites, manned/unmanned aircrafts, and ground-based structures. Agricultural remote sensing is one of the backbone technologies for precision agriculture, which considers within-field variability for site-specific management instead of uniform management as in traditional agriculture. The key of agricultural remote sensing is, with global positioning data and geographic information, to produce spatially-varied data for subsequent precision agricultural operations. Agricultural remote sensing data, as general remote sensing data, have all characteristics of big data. The acquisition, processing, storage, analysis and visualization of agricultural remote sensing big data are critical to the success of precision agriculture. This paper overviews available remote sensing data resources, recent development of technologies for remote sensing big data management, and remote sensing data processing and management for precision agriculture. A five-layer-fifteen- level (FLFL) satellite remote sensing data management structure is described and adapted to create a more appropriate four-layer-twelve-level (FLTL) remote sensing data management structure for management and applications of agricultural remote sensing big data for precision agriculture where the sensors are typically on high-resolution satellites, manned aircrafts, unmanned aerial vehicles and ground-based structures. The FLTL structure is the management and application framework of agricultural remote sensing big data for precision agriculture and local farm studies, which outlooks the future coordination of remote sensing big data management and applications at local regional and farm scale.
文摘This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the modeling of forest properties is site specific and highly uncertain, thus further study is encouraged. In this study we used 1460 sampling plots collected in 16 transects measuring tree diameter (DBH) and other forest properties which were useful for the biomass assessment. The study was carded out in tropical forest region in East Kalimantan, Indo- nesia. The AGB density was estimated applying an existing DBH - biomass equation. The estimate was superimposed over the modified GIS map of the study area, and the biomass density of each land cover was calculated. The RS approach was performed using a subset of sample data to develop the AGB and stem volume linear equation models. Pearson correlation statistics test was conducted using ETM bands reflectance, vegetation indices, image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. Two linear models were generated from the significant RS data. To analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000 and 2003 were preprocessed, classified using maximum likelihood method, and filtered with the majority analysis. We found 158±16 m^3.ha^-1 of stem volume and 168±15 t.ha^-1 of AGB estimated from RS approach, whereas the field measurement and GIS estimated 157±92 m^3.ha^-1 and 167±94 t.ha^-1 of stem volume and AGB, respectively. The dynamics of biomass abundance from 2000 to 2003 were assessed from multi temporal ETM data and we found a slightly declining trend of total biomass over these periods. Remote sensing approach estimated lower biomass abundance than did the GIS and field measurement data. The earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while the later estimated 11.9 Gt and 11.6 Gt of total biomasses, respectively. We found that GLCM mean texture features showed markedly strong correlations with stem volume and biomass.
文摘This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lines between land objects and water objects. Numerical algorithms have been identified and de-vised to segment and classify remote sensing imagery and LiDAR data into land and water pixels, to form and enhance land and water objects, and to trace and vectorize the boundaries between land and water ob-jects as shoreline features. A contouring routine is developed as an alternative method for extracting shore-line features from LiDAR data. While most of numerical algorithms are implemented using C++ program-ming language, some algorithms use available functions of ArcObjects in ArcGIS. Based on VB .NET and ArcObjects programming, a graphical user’s interface has been developed to integrate and organize shoreline extraction routines into a software package. This product represents the first comprehensive software tool dedicated for extracting shorelines from remotely sensed data. Radarsat SAR image, QuickBird multispectral image, and airborne LiDAR data have been used to demonstrate how these software routines can be utilized and combined to extract shoreline features from different types of input data sources: panchromatic or single band imagery, color or multi-spectral image, and LiDAR elevation data. Our software package is freely available for the public through the internet.
基金This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192)
文摘Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by desertification. According to the configuration and ecotope of the earths surface, the coverage of vegetation, occupation ratio of bare sandy land and the soil texture were selected as evaluation indexes by using the field investigation data. The evaluation index system of Keerqin sandy desertification was established by using Remote Sensing data. and the occupation ratio of bare sandy land was obtained by mixed spectrum model. This index system is validated by the field investioation data and results indicate that it is suitable for the desertification evaluation of Keerqin.Foundation Item: This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192)
文摘Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions.It is challenging to determine vegetation using traditional map classification approaches.The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties.It is more demandable to determine the multiple spectral ana-lyses for improving the accuracy of vegetation mapping through remotely sensed images.The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping.The architecture comprises three approaches,feature-based approach,region-based approach,and texture-based approach for classifying the vegetation area.The novel Deep Meta fusion model(DMFM)is created with a unique fusion frame-work of residual stacking of convolution layers with Unique covariate features(UCF),Intensity features(IF),and Colour features(CF).The overhead issues in GPU utilization during Convolution neural network(CNN)models are reduced here with a lightweight architecture.The system considers detailing feature areas to improve classification accuracy and reduce processing time.The proposed DMFM model achieved 99%accuracy,with a maximum processing time of 130 s.The training,testing,and validation losses are degraded to a significant level that shows the performance quality with the DMFM model.The system acts as a standard analysis platform for dynamic datasets since all three different fea-tures,such as Unique covariate features(UCF),Intensity features(IF),and Colour features(CF),are considered very well.
基金funded by the Asia Pacific Network for Global Change Research(APN)-CAF2016-RR11-CMY-Pham
文摘Objective: To correlate climatic and environmental factors such as land surface temperature, rainfall, humidity and normalized difference vegetation index with the incidence of dengue to develop prediction models for the Philippines using remote-sensing data.Methods: Timeseries analysis was performed using dengue cases in four regions of the Philippines and monthly climatic variables extracted from Global Satellite Mapping of Precipitation for rainfall, and MODIS for the land surface temperature and normalized difference vegetation index from 2008-2015.Consistent dataset during the period of study was utilized in Autoregressive Integrated Moving Average models to predict dengue incidence in the four regions being studied.Results: The best-fitting models were selected to characterize the relationship between dengue incidence and climate variables.The predicted cases of dengue for January to December 2015 period fitted well with the actual dengue cases of the same timeframe.It also showed significantly good linear regression with a square of correlation of 0.869 5 for the four regions combined.Conclusion: Climatic and environmental variables are positively associated with dengue incidence and suit best as predictor factors using Autoregressive Integrated Moving Average models.This finding could be a meaningful tool in developing an early warning model based on weather forecasts to deliver effective public health prevention and mitigation programs.
基金funded by China Geological Survey (grant no.1212011120899)the Department of Geology & Mining, China National Nuclear Corporation (grant no.201498)
文摘Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years.
基金This work was supported by the National Advance Research Program(Item No.Y1601-1).
文摘The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.
基金funded by the National Key Technologies R&D Program of China (Grants No. 2017YFC0505104)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying, Mapping and Geoinformation of China (Grants No. DM2016SC09)
文摘At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.