Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtai...Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.展开更多
The development of network and information technology has brought changes to the production environment of scientific and technological information,leading to the integration of multi-type scien-tific and technologica...The development of network and information technology has brought changes to the production environment of scientific and technological information,leading to the integration of multi-type scien-tific and technological information,which has become one of the primary research focuses in the cur-rent field of scientific and technological information analysis.This article proposes a basic mode to realize the fusion of multi-type scientific and technological information,expounds the corresponding basic construction method,and applies it to the scientific and technological topics identification in the field of artificial intelligence(AI).The research results show that the multi-type scientific and technological information fusion mode proposed in this article has certain feasibility in specific appli-cation scenarios,which lays a foundation for the subsequent research work.展开更多
The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monito...The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.展开更多
This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Informa...This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.展开更多
Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digit...Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.展开更多
With the unceasing appearance and widespread application of new surveying technology,the present age mining survey has meet huge change.However,lots of prob- lems occurred while using the new techniques since the numb...With the unceasing appearance and widespread application of new surveying technology,the present age mining survey has meet huge change.However,lots of prob- lems occurred while using the new techniques since the number of mine is large in China and condition of the mine district is complex,it in some sense influenced the mine exploi- tation and management of China.Summarized the present situation of new technical ap- plication in mining survey,including the advanced instrumentation equipment,the '3S' technology,the information and the network technology and the information fusion tech- nology and so on,and analyzed the problems which exists in the current mining survey,it also provided new ways to present age mining survey from the sustainable development angle.展开更多
Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal ...Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.展开更多
Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attr...Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.展开更多
The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distrib...The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.展开更多
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.C...Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Sub...For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.展开更多
The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision makin...The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision making theory. The method defines the distance matrix and grey association matrix between all object types and unknown object. After solving the optimization problem of maximizing the standard deviations for all attributes, the weights of the attributes are obtained. Thus, the result of recognition for the unknown object is given by the grey association degree. This method avoids the subjectivity of selecting attributes weights. It is straightforward and can be performed on computer easily. The simulated example demonstrates the feasibility and effectiveness of the proposed method.展开更多
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive trea...The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52272438)the Jiangsu Agricultural Science and Technology Innovation[Grant No.CX(21)3149]+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Yueshengjihua-2206)the Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2007).
文摘Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.
基金Supported by the National Natural Science Foundation of China(No.72074201).
文摘The development of network and information technology has brought changes to the production environment of scientific and technological information,leading to the integration of multi-type scien-tific and technological information,which has become one of the primary research focuses in the cur-rent field of scientific and technological information analysis.This article proposes a basic mode to realize the fusion of multi-type scientific and technological information,expounds the corresponding basic construction method,and applies it to the scientific and technological topics identification in the field of artificial intelligence(AI).The research results show that the multi-type scientific and technological information fusion mode proposed in this article has certain feasibility in specific appli-cation scenarios,which lays a foundation for the subsequent research work.
基金Liaoning Province Technology Key Project(2007231003,2006220019)Liaoning Province Talent Fund Projects(2005219005,2007R24)Liaoning Province Innovative Team Projects(2007T071,2006T076)
文摘The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.
文摘This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.
基金Supported by the National Natural Science Foundation of China(No.61304017,11372309)Key Technology Development Project of Jilin Province(No.20150204074GX)+1 种基金the Project Development Plan of Science and Technology(No.20150520111zh)the Provincial Special Funds Project of Science and Technology Cooperation(No.2014SYHZ0004)
文摘Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.
基金the National Natural Science Foundation of China(40771159)the Science and Technology Plan Project of Liaoning Province(2007308003)the Open Research Fund Program of the Geomatics and Applications Laboratory,Liaoning Technical University(2007009)
文摘With the unceasing appearance and widespread application of new surveying technology,the present age mining survey has meet huge change.However,lots of prob- lems occurred while using the new techniques since the number of mine is large in China and condition of the mine district is complex,it in some sense influenced the mine exploi- tation and management of China.Summarized the present situation of new technical ap- plication in mining survey,including the advanced instrumentation equipment,the '3S' technology,the information and the network technology and the information fusion tech- nology and so on,and analyzed the problems which exists in the current mining survey,it also provided new ways to present age mining survey from the sustainable development angle.
基金supported by:The Key Project of National Natural Science Foundation of China(U21A20125)The Open Project of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC21KF03)+5 种基金The National Key Research and Development Program of China(2020YFB1314203,2020YFB1314103)The Open Project of Key Laboratory of Conveyance and Equipment(KLCE2021-05)The Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ210639)The Supply and Demand Linking Employment Education Project of the Ministry of Education(20220100621)The Open Project of State Key Laboratory for Manufacturing Systems Engineering(sklms2023009)The Suzhou Basic Research Project(SJC2023003).
文摘Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.
基金co-supported by the National Natural Science Foundation of China(Nos.62233003 and 62073072)the Key Projects of Key R&D Program of Jiangsu Province,China(Nos.BE2020006 and BE2020006-1)the Shenzhen Science and Technology Program,China(Nos.JCYJ20210324132202005 and JCYJ20220818101206014).
文摘Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.
基金This work was supported by the National Natural Science Foundation of China(No.51876119)the Shanghai Pujiang Program(No.17PJD017).
文摘The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.
基金Supported by the National Natural Science Foundation of China(No.61300214)the National Natural Science Foundation of Henan Province(No.132300410148)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher ofHenan Province Universities(No.2013GGJS-026)
文摘Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
基金Supported by National Natural Science Foundation of China (No.60874063)Key Laboratory of Electronics Engineering,College of Heilongjiang Province (No.DZZD2010-5),and Science and Automatic Control Key Laboratory of Heilongjiang University
文摘For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.
基金This project is supported by National Natural Science Foundation of China (10626029) Jiangxi Province Natural Science Foundation of China (0611082) Science and Technology Project of Jiangxi province educational department in China (GJJ08350)
文摘The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision making theory. The method defines the distance matrix and grey association matrix between all object types and unknown object. After solving the optimization problem of maximizing the standard deviations for all attributes, the weights of the attributes are obtained. Thus, the result of recognition for the unknown object is given by the grey association degree. This method avoids the subjectivity of selecting attributes weights. It is straightforward and can be performed on computer easily. The simulated example demonstrates the feasibility and effectiveness of the proposed method.
基金Supported by the National Natural Science Foundations of China(No.61300214,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+2 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universities,and the Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.