针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据...针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据传输的高效MAC协议——SDTE-MAC(high-Efficiency MAC protocol based on Spontaneous Data Transmission)。SDTE-MAC通过让各节点都维护一张或多张时间单元链表,使各节点与其余节点在网络运行时间上达到同步,从而获悉各节点应该在信道空闲时隙的什么位置开始发送数据帧,优化了传统的信道时隙分配和信道剩余时隙再分配的流程,提高了网络吞吐量和信道时隙利用率,降低了数据时延,能够进一步提升双LAN太赫兹无线局域网的性能。仿真结果表明,网络饱和时,相较于AHT-MAC(Adaptive High Throughout multi-pan MAC protocol)中的N-CTAP(Normal Channel Time Allocation Period)时段时隙资源分配新机制以及自适应缩短超帧时段机制,SDTE-MAC的MAC层吞吐量提升了9.2%,信道时隙利用率提升了10.9%,数据时延降低了22.2%。展开更多
随着预训练语言模型在自然语言处理(NLP)任务上的应用,意图检测(ID)和槽位填充(SF)联合建模提高了口语理解的性能。现有方法大多关注意图和槽位的相互作用,忽略了差异文本序列建模对口语理解(SLU)任务的影响。因此,提出一种基于多任务...随着预训练语言模型在自然语言处理(NLP)任务上的应用,意图检测(ID)和槽位填充(SF)联合建模提高了口语理解的性能。现有方法大多关注意图和槽位的相互作用,忽略了差异文本序列建模对口语理解(SLU)任务的影响。因此,提出一种基于多任务学习的意图检测和槽位填充联合方法(IDSFML)。首先,使用随机掩盖mask策略构造差异文本,设计结合自编码器和注意力机制的神经网络(AEA)结构,为口语理解任务融入差异文本序列的特征;其次,设计相似性分布任务,使差异文本和原始文本的表征相似;最后,联合训练ID、SF和差异文本序列相似性分布三个任务。在航班旅行信息系统(ATIS)和SNIPS数据集上的实验结果表明,IDSFML与表现次优的基线方法SASGBC(Self-Attention and Slot-Gated on top of BERT with CRF)相比,槽位填充F1值分别提升了1.9和1.6个百分点,意图检测准确率分别提升了0.2和0.4个百分点,提高了口语理解任务的准确率。展开更多
随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下...随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下降。为了解决随机接入网络中的干扰管控问题,考虑基于协作接收的多基站时隙Aloha网络,利用强化学习工具,设计自适应传输算法,实现干扰管控,优化网络的吞吐量性能,并提高网络的公平性。首先,设计了基于Q-学习的自适应传输算法,通过仿真验证了该算法面对不同网络流量时均能保障较高的网络吞吐量性能。其次,为了提高网络的公平性,采用惩罚函数法改进自适应传输算法,并通过仿真验证了面向公平性优化后的算法能够大幅提高网络的公平性,并保障网络的吞吐性能。展开更多
文摘针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据传输的高效MAC协议——SDTE-MAC(high-Efficiency MAC protocol based on Spontaneous Data Transmission)。SDTE-MAC通过让各节点都维护一张或多张时间单元链表,使各节点与其余节点在网络运行时间上达到同步,从而获悉各节点应该在信道空闲时隙的什么位置开始发送数据帧,优化了传统的信道时隙分配和信道剩余时隙再分配的流程,提高了网络吞吐量和信道时隙利用率,降低了数据时延,能够进一步提升双LAN太赫兹无线局域网的性能。仿真结果表明,网络饱和时,相较于AHT-MAC(Adaptive High Throughout multi-pan MAC protocol)中的N-CTAP(Normal Channel Time Allocation Period)时段时隙资源分配新机制以及自适应缩短超帧时段机制,SDTE-MAC的MAC层吞吐量提升了9.2%,信道时隙利用率提升了10.9%,数据时延降低了22.2%。
文摘随着预训练语言模型在自然语言处理(NLP)任务上的应用,意图检测(ID)和槽位填充(SF)联合建模提高了口语理解的性能。现有方法大多关注意图和槽位的相互作用,忽略了差异文本序列建模对口语理解(SLU)任务的影响。因此,提出一种基于多任务学习的意图检测和槽位填充联合方法(IDSFML)。首先,使用随机掩盖mask策略构造差异文本,设计结合自编码器和注意力机制的神经网络(AEA)结构,为口语理解任务融入差异文本序列的特征;其次,设计相似性分布任务,使差异文本和原始文本的表征相似;最后,联合训练ID、SF和差异文本序列相似性分布三个任务。在航班旅行信息系统(ATIS)和SNIPS数据集上的实验结果表明,IDSFML与表现次优的基线方法SASGBC(Self-Attention and Slot-Gated on top of BERT with CRF)相比,槽位填充F1值分别提升了1.9和1.6个百分点,意图检测准确率分别提升了0.2和0.4个百分点,提高了口语理解任务的准确率。
文摘随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下降。为了解决随机接入网络中的干扰管控问题,考虑基于协作接收的多基站时隙Aloha网络,利用强化学习工具,设计自适应传输算法,实现干扰管控,优化网络的吞吐量性能,并提高网络的公平性。首先,设计了基于Q-学习的自适应传输算法,通过仿真验证了该算法面对不同网络流量时均能保障较高的网络吞吐量性能。其次,为了提高网络的公平性,采用惩罚函数法改进自适应传输算法,并通过仿真验证了面向公平性优化后的算法能够大幅提高网络的公平性,并保障网络的吞吐性能。