期刊文献+
共找到139,457篇文章
< 1 2 250 >
每页显示 20 50 100
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
1
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
2
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
3
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
4
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
下载PDF
A Web-Based Approach for the Efficient Management of Massive Multi-source 3D Models
5
作者 ZHAO Qiansheng TANG Ruibing +1 位作者 PENG Mingjun GUO Mingwu 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期24-41,共18页
Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development... Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%. 展开更多
关键词 massive multi-source real-scene 3D model non-relational database global 3D geocoding system importance factor massive model management
下载PDF
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
6
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
下载PDF
Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration
7
作者 Zhiping Chen Jia Zhang +2 位作者 Daren Zhang Xiaolin Chang Wei Zhou 《Artificial Intelligence in Geosciences》 2024年第1期282-293,共12页
Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of indivi... Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of individual prediction methods.This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model(PSO-PIP),which incorporates a particle swarm optimization algorithm enhanced with dy-namic clustering and adaptive parameter tuning(KGPSO).The model integrates multi-source data from the Lattice Boltzmann Method(LBM),Pore Network Modeling(PNM),and Finite Difference Method(FDM).By assigning optimal weight coefficients to the outputs of these methods,the model minimizes deviations from actual values and enhances permeability prediction performance.Initially,the computational performances of the LBM,PNM,and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples.It is observed that these methods exhibit computational biases in certain permeability ranges.The PSOPIP model is proposed to combine the strengths of each computational approach and mitigate their limitations.The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals,significantly enhancing prediction accuracy.The outcomes of this study provide a new tool and perspective for the comprehensive,rapid,and accurate prediction of permeability in porous media. 展开更多
关键词 Porous media Particle swarm optimization algorithm multi-source data integration Permeability prediction
下载PDF
Clinical value of combining epirubicin with mindfulness intervention in patients with urinary system tumors and depression
8
作者 Juan Liu Yan-Ping Guo +1 位作者 Yan-Mei Lu Bei-Lin Wang 《World Journal of Psychiatry》 SCIE 2025年第1期54-62,共9页
BACKGROUND Urinary system tumors often cause negative psychological symptoms,such as depression and dysphoria which significantly impact immune function and indirectly affect cancer prognosis.While epirubicin(EPI)is r... BACKGROUND Urinary system tumors often cause negative psychological symptoms,such as depression and dysphoria which significantly impact immune function and indirectly affect cancer prognosis.While epirubicin(EPI)is recommended by the European Association of Urology and can improve prognosis,its long-term use can cause toxic side effects,reduce treatment compliance,and increase psycho-logical burden.Therefore,an appropriate intervention mode is necessary.METHODS This was a retrospective study including 110 patients with urinary system tumors and depression admitted to Zhumadian Central Hospital between March 2021 and July 2023.Patients were divided into conventional(n=55)and joint inter-vention(n=55)groups.The conventional group received mitomycin and routine nursing,while the joint intervention group received EPI and mindfulness intervention.Both groups underwent three cycles of chemotherapy.Immune function(CD4+cells,CD8+cells,CD4+/CD8+ratio),tumor marker levels[urinary bladder cancer antigen(UBC),bladder tumor antigen(BTA)and nuclear matrix protein 22(NMP22)],quality of life questionnaire-core 30(QLQ-C30),17-item Hamilton depression scale(HAMD-17),and cancer-related fatigue[cancer fatigue scale(CFS)]were assessed.Adverse reactions and nursing satisfaction were recorded and evaluated.RESULTS Post-intervention,CD4+,CD8+,and CD4+/CD8+levels increased in both groups,with the joint intervention group showing more significant improvement(P<0.05).Tumor marker levels(NMP22,BTA,and UBC)were lower in the joint intervention group compared to the conventional group(P<0.05).The joint intervention group also showed a greater reduction in HAMD-17 scores(9.38±3.12 vs 15.45±4.86,P<0.05),higher QLQ-C30 scores,and lower CFS scores(both P<0.05).Additionally,the joint intervention group had a lower incidence of adverse reactions and higher nursing satisfaction(P<0.05).CONCLUSION EPI combined with mindfulness intervention significantly improved clinical outcomes in patients with urinary system tumors and depression and is worthy of clinical application. 展开更多
关键词 Urinary system tumor Bladder cancer Prostate cancer DEPRESSION EPIRUBICIN
下载PDF
Correlation between gut microbiota and tumor immune microenvironment:A bibliometric and visualized study
9
作者 Zheng-Jun Hu Hui-Rong Zhu +3 位作者 Yong-Jie Jin Pan Liu Xiao-Wei Yu Yu-Ren Zhang 《World Journal of Clinical Oncology》 2025年第2期110-129,共20页
BACKGROUND In recent years,numerous reports have been published regarding the relationship between the gut microbiota and the tumor immune microenvironment(TIME).However,to date,no systematic study has been conducted ... BACKGROUND In recent years,numerous reports have been published regarding the relationship between the gut microbiota and the tumor immune microenvironment(TIME).However,to date,no systematic study has been conducted on the relationship between gut microbiota and the TIME using bibliometric methods.AIM To describe the current global research status on the correlation between gut microbiota and the TIME,and to identify the most influential countries,research institutions,researchers,and research hotspots related to this topic.METHODS We searched for all literature related to gut microbiota and TIME published from January 1,2014,to May 28,2024,in the Web of Science Core Collection database.We then conducted a bibliometric analysis and created visual maps of the published literature on countries,institutions,authors,keywords,references,etc.,using CiteSpace(6.2R6),VOSviewer(1.6.20),and bibliometrics(based on R 4.3.2).RESULTS In total,491 documents were included,with a rapid increase in the number of publications starting in 2019.The country with the highest number of publications was China,followed by the United States.Germany has the highest number of citations in literature.From a centrality perspective,the United States has the highest influence in this field.The institutions with the highest number of publications were Shanghai Jiao Tong University and Zhejiang University.However,the institution with the most citations was the United States National Cancer Institute.Among authors,Professor Giorgio Trinchieri from the National Institutes of Health has the most local impact in this field.The most cited author was Fan XZ.The results of journal publications showed that the top three journals with the highest number of published papers were Frontiers in Immunology,Cancers,and Frontiers in Oncology.The three most frequently used keywords were gut microbiota,tumor microenvironment,and immunotherapy.CONCLUSION This study systematically elaborates on the research progress related to gut microbiota and TIME over the past decade.Research results indicate that the number of publications has rapidly increased since 2019,with research hotspots including“gut microbiota”,“tumor microenvironment”and“immunotherapy”.Exploring the effects of specific gut microbiota or derived metabolites on the behavior of immune cells in the TIME,regulating the secretion of immune molecules,and influencing immunotherapy are research hotspots and future research directions. 展开更多
关键词 Gut microbiota tumor immune microenvironment BIBLIOMETRIC CITESPACE VOSviewer R-bibliometrics
下载PDF
Unraveling the landscape of pediatric pancreatic tumors:Insights from Japan
10
作者 Savvas Lampridis 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期34-38,共5页
Pediatric pancreatic tumors,though rare,pose significant diagnostic and manage-ment challenges.The recent,22-year nationwide survey on pediatric pancreatic tumors in Japan by Makita et al offers valuable insights into... Pediatric pancreatic tumors,though rare,pose significant diagnostic and manage-ment challenges.The recent,22-year nationwide survey on pediatric pancreatic tumors in Japan by Makita et al offers valuable insights into this uncommon enti-ty,revealing striking geographical variations and questioning current treatment paradigms.This editorial commentary analyzes the study's key findings,inclu-ding the predominance of solid pseudopapillary neoplasms and their younger age of onset,which contrast sharply with Western data.It explores the implications for clinical practice and research,emphasizing the need for population-specific approaches to diagnosis and treatment.The revealed limited institutional expe-rience and surgical management patterns prompt a reevaluation of optimal care delivery for these complex cases,suggesting benefits of centralizing healthcare services.Furthermore,the commentary advocates for international collaborative studies to elucidate the genetic,environmental,and lifestyle factors influencing the development and progression of pediatric pancreatic tumors across diverse populations.It also outlines future directions,calling for advancements in precision medicine and innovative care delivery models to improve global patient outcomes.Unraveling Makita et al's findings within the broader landscape of pediatric oncology can stimulate further research and clinical advancements in managing pancreatic and other rare tumors in children. 展开更多
关键词 CHILD EPIDEMIOLOGY JAPAN Pancreatic endocrine tumors Pancreatic neoplasms PANCREATOBLASTOMA Pediatric oncology Solid pseudopapillary neoplasm Surgical management Survey
下载PDF
Separation method for multi-source blended seismic data
11
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 multi-source data separation linear inverse problem sparsest constraint pseudo-deblending filtering
下载PDF
Cycle-by-Cycle Queue Length Estimation for Signalized Intersections Using Multi-Source Data 被引量:4
12
作者 Zhongyu Wang Qing Cai +2 位作者 Bing Wu Yinhai Wang Linbo Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期86-93,共8页
In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is pre... In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper. 展开更多
关键词 QUEUE LENGTH estimation multi-source data TRAFFIC SIGNALS TRAFFIC SHOCKWAVE theory
下载PDF
Numerical investigation of the shockwave overpressure fields of multi-sources FAE explosions 被引量:5
13
作者 Chun-hua Bai Xing-yu Zhao +1 位作者 Jian Yao Bin-feng Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1168-1177,共10页
Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite elemen... Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction.The model is verified with the experimental data of a fourfoldsource FAE explosion,with the total fuel mass of 340 kg.Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source.In the case of multisources,the overpressure fields are influenced significantly by source scattering distance and source number.Subsequently,damage ranges of overpressure under three different levels are calculated.Within a suitable source scattering distance,the damage range of multi-sources situation is greater than that of the single-source,under the same amount of total fuel mass.This research provides a basis for personnel shockwave protection from multi-sources FAE explosion. 展开更多
关键词 Fuel-air explosive Numerical simulation multi-sources explosion Shockwave overpressure field
下载PDF
Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances 被引量:4
14
作者 Chun-Biao Gan Chang-Tao Ding Shi-Xi Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期983-994,共12页
During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.Th... During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg. 展开更多
关键词 Biped robot multi-source random disturbances Sensitive parameters RBF neural network Taguchi method Performance evaluation
下载PDF
Alternative 3D Modeling Approaches Based on Complex Multi-Source Geological Data Interpretation 被引量:5
15
作者 李明超 韩彦青 +1 位作者 缪正建 高伟 《Transactions of Tianjin University》 EI CAS 2014年第1期7-14,共8页
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana... Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands. 展开更多
关键词 multi-source data geological data interpretation interpolation-approximation fitting 3D geological sur-face modeling
下载PDF
Multi-Source Data Privacy Protection Method Based on Homomorphic Encryption and Blockchain 被引量:3
16
作者 Ze Xu Sanxing Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期861-881,共21页
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin... Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications. 展开更多
关键词 Homomorphic encryption blockchain technology multi-source data data privacy protection privacy data processing
下载PDF
Research on Data Fusion of Adaptive Weighted Multi-Source Sensor 被引量:4
17
作者 Donghui Li Cong Shen +5 位作者 Xiaopeng Dai Xinghui Zhu Jian Luo Xueting Li Haiwen Chen Zhiyao Liang 《Computers, Materials & Continua》 SCIE EI 2019年第9期1217-1231,共15页
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu... Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality. 展开更多
关键词 Adaptive weighting multi-source sensor data fusion loss of data processing grubbs elimination
下载PDF
Multi-source Data-driven Identification of Urban Functional Areas:A Case of Shenyang,China 被引量:3
18
作者 XUE Bing XIAO Xiao +2 位作者 LI Jingzhong ZHAO Bingyu FU Bo 《Chinese Geographical Science》 SCIE CSCD 2023年第1期21-35,共15页
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ... Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective. 展开更多
关键词 human-land relationship multi-source big data urban functional area identification method Shenyang City
下载PDF
Accessing Multi-Source Geological Data through Network in MORPAS Software System 被引量:3
19
作者 MeiHongbo HuGuangdao +1 位作者 ChinJian~o LiZhenhua 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期265-268,共4页
MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical,... MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system. 展开更多
关键词 multi-source geological data SQL Server accessing data through network
下载PDF
Recent trends of machine learning applied to multi-source data of medicinal plants 被引量:2
20
作者 Yanying Zhang Yuanzhong Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1388-1407,共20页
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese... In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants. 展开更多
关键词 Machine learning Medicinal plant multi-source data Data fusion Application
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部