The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achiev...The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achieve using satellite remote sensing.Considering the convenient,facilitative,and flexible characteristics of UAV(unmanned air vehicle)remote sensing tech-nology,this study selects a campus as a typical research area and uses the Pegasus D2000 equipped with a D-MSPC2000 multi-spectral camera and a CAM3000 aerial camera to acquire oblique images and multi-spectral data.Using professional software,including Context Capture,ENVI,and ArcGIS,a 3D(three-dimensional)campus model,a digital orthophoto map,and multi-spectral remote sensing map drawing are realized,and the geometric accuracy of typical feature selection is evaluated.Based on a quantitative remote sensing model,the campus ecological environment assessment is performed from the perspectives of vegetation and water body.The results presented in this study could be of great significance to the scientific management and sustainable development of regional natural resources.展开更多
由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型...由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型(Perturbed Linear Mixing Model,PLMM)在解混的过程中可以减轻端元变异性造成的不利影响,但是对缩放效应造成的变异性的处理能力较弱。为此,本文改进了扰动线性混合模型,引入了尺度因子以处理缩放效应造成的变异性,并结合超像素分割算法划分局部同质区,然后设计出基于局部同质区共享端元变异性的解混算法(Shared Endmember Variability in Unmixing,SEVU)。与扰动线性混合模型,扩展线性混合模型(Extended Linear Mixing Model,ELMM)等算法相比,所提SEVU算法在合成数据集上平均端元光谱角距离(mean Spectral Angle Distance,mSAD)和丰度均方根误差(abundance Root Mean Square Error,aRMSE)最优,分别为0.0855和0.0562;在Jasper Ridge和Cuprite真实数据集上mSAD是最优的,分别为0.0603和0.1003。在合成数据集和两个实测数据集上的实验结果验证了SEVU算法的有效性。展开更多
基金supported by the National Natural Science Foundation of China (Grant No.42171311)the Open Fund of State Key Laboratory of Remote Sensing Science (Grant No.OFSLRSS202218)+1 种基金the Key Research and Development Program of the Hainan Province,China (Grant No.ZDYF2021SHFZ105)the Training Program of Excellent Master Thesis of Zhejiang Ocean University.
文摘The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achieve using satellite remote sensing.Considering the convenient,facilitative,and flexible characteristics of UAV(unmanned air vehicle)remote sensing tech-nology,this study selects a campus as a typical research area and uses the Pegasus D2000 equipped with a D-MSPC2000 multi-spectral camera and a CAM3000 aerial camera to acquire oblique images and multi-spectral data.Using professional software,including Context Capture,ENVI,and ArcGIS,a 3D(three-dimensional)campus model,a digital orthophoto map,and multi-spectral remote sensing map drawing are realized,and the geometric accuracy of typical feature selection is evaluated.Based on a quantitative remote sensing model,the campus ecological environment assessment is performed from the perspectives of vegetation and water body.The results presented in this study could be of great significance to the scientific management and sustainable development of regional natural resources.
文摘由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型(Perturbed Linear Mixing Model,PLMM)在解混的过程中可以减轻端元变异性造成的不利影响,但是对缩放效应造成的变异性的处理能力较弱。为此,本文改进了扰动线性混合模型,引入了尺度因子以处理缩放效应造成的变异性,并结合超像素分割算法划分局部同质区,然后设计出基于局部同质区共享端元变异性的解混算法(Shared Endmember Variability in Unmixing,SEVU)。与扰动线性混合模型,扩展线性混合模型(Extended Linear Mixing Model,ELMM)等算法相比,所提SEVU算法在合成数据集上平均端元光谱角距离(mean Spectral Angle Distance,mSAD)和丰度均方根误差(abundance Root Mean Square Error,aRMSE)最优,分别为0.0855和0.0562;在Jasper Ridge和Cuprite真实数据集上mSAD是最优的,分别为0.0603和0.1003。在合成数据集和两个实测数据集上的实验结果验证了SEVU算法的有效性。