Conventional multi-stage constant current charging strategies often use higher multiples of current to charge the battery in pursuit of shorter charging times.However,this leads to an increase in battery temperature,w...Conventional multi-stage constant current charging strategies often use higher multiples of current to charge the battery in pursuit of shorter charging times.However,this leads to an increase in battery temperature,while shortening the charging time.This in turn affects the safety of the charging process.Furthermore,the higher charging currents are not ideal for shortening the charging time in the later stages of charging.To solve the aforementioned problems,in this study,a multi-stage constant current charging strategy is presented.This strategy can shorten the battery charging time by using the increase in battery temperature during the charging process as a constraint,using a genetic algorithm to calculate the charging current value,and investigating the phased approach to charging.Finally,the charging strategy is experimentally validated at different ambient temperatures and different initial SOCs.The experimental results show that the charging strategy proposed in this paper not only reduces the amount of calculations,but also reduces the temperature rise by up to 46.4%and charging time by up to 4.2%under different operating conditions.展开更多
To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the...To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.展开更多
The derivative of charge and discharge curves (d t /d E vs E plot) can be used to describe the charge and discharge process more exactly. The d t /d E ? 獷 plots of nickel hydroxide electrode at different charge/disch...The derivative of charge and discharge curves (d t /d E vs E plot) can be used to describe the charge and discharge process more exactly. The d t /d E ? 獷 plots of nickel hydroxide electrode at different charge/discharge rates and intermittent discharge experiment are discussed. Though the d t /d E ? 獷 plot is affected by many factors, it clearly has intrinsic relation with the nature of active material such as conductivity and thermodynamic potential of active material, which changes with the state of charge. The d t /d E—E plot can also be applied to other electrochemical active materials, especially to those having several phases during charge or discharge.展开更多
SiC MOSFET是一种高性能的电力电子器件,其开通/关断过程中积累/释放的栅电荷Q_(g)对MOSFET的开关速度、功率损耗等参数有重要影响。通常采用在栅极设置恒流源驱动,对时间进行积分的方法来测量Q_(g)。为了降低驱动复杂度,提高测试结果...SiC MOSFET是一种高性能的电力电子器件,其开通/关断过程中积累/释放的栅电荷Q_(g)对MOSFET的开关速度、功率损耗等参数有重要影响。通常采用在栅极设置恒流源驱动,对时间进行积分的方法来测量Q_(g)。为了降低驱动复杂度,提高测试结果精度和可视性,基于双脉冲测试平台的感性负载回路,改用耗尽型MOSFET限制栅极电流实现恒流充电,对SiC MOSFET进行测试。同时利用反馈电阻将较小的栅极电流信号转换为较大的电压信号。实验结果表明:在误差允许范围(±5%)内该测试方案能较为准确地测得SiC MOSFET的Q_(g),测试结果符合器件规格书曲线。展开更多
A particle swarm optimization algorithm to search for an optimal five-stage constant-current charge pattern is proposed.The goal is to maximize the objective function for the proposed charge pattern based on the charg...A particle swarm optimization algorithm to search for an optimal five-stage constant-current charge pattern is proposed.The goal is to maximize the objective function for the proposed charge pattern based on the charging capacity,time,and energy efficiency,which all share the same weight.Firstly,an equivalent circuit model is built and battery parameters are identified.Then the optimal five-stage constant-current charge pattern is searched using a particle swarm optimization algorithm.At last,comparative experiments using the constant current-constant voltage(CC-CV)method are performed.Although the charging SOC of the proposed charging pattern was 2.5%lower than that of the CC-CV strategy,the charging time and charging energy efficiency are improved by 15.6%and 0.47%respectively.In particular,the maximum temperature increase of the battery is approximately 0.8℃lower than that of the CC-CV method,which indicates that the proposed charging pattern is more secure.展开更多
为应对锂离子电池在充电过程中由于其复杂电化学特性所引发的多因素不平衡问题,本文在综合考量充电时间、充电效率和电池健康状态(state of health,SOH)3个因素的基础上,提出一种基于差分电压平台(differential voltage platform,DVP)...为应对锂离子电池在充电过程中由于其复杂电化学特性所引发的多因素不平衡问题,本文在综合考量充电时间、充电效率和电池健康状态(state of health,SOH)3个因素的基础上,提出一种基于差分电压平台(differential voltage platform,DVP)的自适应多阶恒流(DVP-based multistage constant current,DMCC)充电策略。首先,建立电-热-老化耦合模型以模拟充电过程中电池参数特性的变化。其次,为实现充电过程中的动态优化和自适应分阶,将充电电压差分处理并以DVP作为恒流切换条件,利用改进的灰狼算法(grey wolf optimizer,GWO)优化各阶段充电电流。然后,基于优化结果,采用帕累托最优前沿(Pareto optimal frontier)分析比较不同权重值组合对于充电优化的影响。最后,在MATLAB/Simulink平台搭建锂离子电池充电仿真系统,与传统恒流恒压(constant current-constant voltage,CC-CV)策略和基于截止电压的多阶恒流(voltage-based multistage constant current,VMCC)策略进行对比试验,仿真结果表明,本文所提充电控制策略可有效降低充电引起的电池容量衰减,缩短电池充电时间。展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51677058)
文摘Conventional multi-stage constant current charging strategies often use higher multiples of current to charge the battery in pursuit of shorter charging times.However,this leads to an increase in battery temperature,while shortening the charging time.This in turn affects the safety of the charging process.Furthermore,the higher charging currents are not ideal for shortening the charging time in the later stages of charging.To solve the aforementioned problems,in this study,a multi-stage constant current charging strategy is presented.This strategy can shorten the battery charging time by using the increase in battery temperature during the charging process as a constraint,using a genetic algorithm to calculate the charging current value,and investigating the phased approach to charging.Finally,the charging strategy is experimentally validated at different ambient temperatures and different initial SOCs.The experimental results show that the charging strategy proposed in this paper not only reduces the amount of calculations,but also reduces the temperature rise by up to 46.4%and charging time by up to 4.2%under different operating conditions.
文摘To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.
文摘The derivative of charge and discharge curves (d t /d E vs E plot) can be used to describe the charge and discharge process more exactly. The d t /d E ? 獷 plots of nickel hydroxide electrode at different charge/discharge rates and intermittent discharge experiment are discussed. Though the d t /d E ? 獷 plot is affected by many factors, it clearly has intrinsic relation with the nature of active material such as conductivity and thermodynamic potential of active material, which changes with the state of charge. The d t /d E—E plot can also be applied to other electrochemical active materials, especially to those having several phases during charge or discharge.
基金Supported by the Key Research and Development Program of Hunan Province of China(2018GK2031)the National Natural Science Foundation of China(51822702),and the Excellent Innovation Youth Program of Changsha of China(KQ1802029)。
文摘A particle swarm optimization algorithm to search for an optimal five-stage constant-current charge pattern is proposed.The goal is to maximize the objective function for the proposed charge pattern based on the charging capacity,time,and energy efficiency,which all share the same weight.Firstly,an equivalent circuit model is built and battery parameters are identified.Then the optimal five-stage constant-current charge pattern is searched using a particle swarm optimization algorithm.At last,comparative experiments using the constant current-constant voltage(CC-CV)method are performed.Although the charging SOC of the proposed charging pattern was 2.5%lower than that of the CC-CV strategy,the charging time and charging energy efficiency are improved by 15.6%and 0.47%respectively.In particular,the maximum temperature increase of the battery is approximately 0.8℃lower than that of the CC-CV method,which indicates that the proposed charging pattern is more secure.