To investigate the non-uniform distribution of different gases passing through the parallel cyclones,experiments were conducted on a circulating fluidized bed(CFB)equipped with six asymmetrical cyclones.A multi-tracer...To investigate the non-uniform distribution of different gases passing through the parallel cyclones,experiments were conducted on a circulating fluidized bed(CFB)equipped with six asymmetrical cyclones.A multi-tracer gas method was used,with CO,O_(2),and CO_(2) chosen to represent gases with different properties in the flue gas at the inlets of the cyclones.The uniformity of multi-gas distribution was evaluated by measuring the concentration deviations of each tracer gas passing through individual cyclones.The results indicate that the concentrations of multi-tracer gases are higher in the middle cyclone among the three,which are located on the tracer gas injection side during the test of single-side secondary air(SA)tracing.The maximum concentration deviation of tracer gases is for CO_(2),while the minimum is for CO.At the three cyclone inlets on the opposite side,the tracer gas with higher density exhibits a more uniform distribution,and the gas uniformity decreases as the density decreases.The effects of superficial velocity,SA ratio,bed inventory,and tracer gas injection region on the uniformity of gas distribution were studied.The results show that superficial velocity and SA ratio primarily affect the uniformity of higher density gases,while bed inventory has a greater influence on lower density gases.The gas distributions are most non-uniform,especially for CO_(2),when the tracer gas injection region is near the rear wall closer to the induced draft fan during the test of regional SA tracing.展开更多
The first generation coherence algorithm(namely C1 algorithm) is based on the statistical cross-correlation theory, which calculates the coherency of seismic data along both in-line and cross-line. The work, based on ...The first generation coherence algorithm(namely C1 algorithm) is based on the statistical cross-correlation theory, which calculates the coherency of seismic data along both in-line and cross-line. The work, based on texture technique, makes full use of seismic information in different directions and the difference of multi-traces, and proposes a novel methodology named the texture coherence algorithm for seismic reservoir characterization, for short TEC algorithm. Besides, in-line and cross-line directions, it also calculates seismic coherency in 45° and 135° directions deviating from in-line. First, we clearly propose an optimization method and a criterion which structure graylevel co-occurrence matrix parameters in TEC algorithm. Furthermore, the matrix to measure the difference between multi-traces is constructed by texture technique, resulting in horizontal constraints of texture coherence attribute. Compared with the C1 algorithm, the TEC algorithm based on graylevel matrix is of the feature that is multi-direction information fusion and keeps the simplicity and high speed, even it is of multi-trace horizontal constraint, leading to significantly improved resolution. The practical application of the TEC algorithm shows that the TEC attribute is superior to both the C1 attribute and amplitude attribute in identifying faults and channels, and it is as successful as the third generation coherence.展开更多
基金financed by the Key Project of the National Research Program of China(grant No.2020YFB0606201).
文摘To investigate the non-uniform distribution of different gases passing through the parallel cyclones,experiments were conducted on a circulating fluidized bed(CFB)equipped with six asymmetrical cyclones.A multi-tracer gas method was used,with CO,O_(2),and CO_(2) chosen to represent gases with different properties in the flue gas at the inlets of the cyclones.The uniformity of multi-gas distribution was evaluated by measuring the concentration deviations of each tracer gas passing through individual cyclones.The results indicate that the concentrations of multi-tracer gases are higher in the middle cyclone among the three,which are located on the tracer gas injection side during the test of single-side secondary air(SA)tracing.The maximum concentration deviation of tracer gases is for CO_(2),while the minimum is for CO.At the three cyclone inlets on the opposite side,the tracer gas with higher density exhibits a more uniform distribution,and the gas uniformity decreases as the density decreases.The effects of superficial velocity,SA ratio,bed inventory,and tracer gas injection region on the uniformity of gas distribution were studied.The results show that superficial velocity and SA ratio primarily affect the uniformity of higher density gases,while bed inventory has a greater influence on lower density gases.The gas distributions are most non-uniform,especially for CO_(2),when the tracer gas injection region is near the rear wall closer to the induced draft fan during the test of regional SA tracing.
基金Project(2013CB228600)supported by the National Basic Research Program of ChinaProject(2011A-3606)supported by the CNPC "12.5" Program of China
文摘The first generation coherence algorithm(namely C1 algorithm) is based on the statistical cross-correlation theory, which calculates the coherency of seismic data along both in-line and cross-line. The work, based on texture technique, makes full use of seismic information in different directions and the difference of multi-traces, and proposes a novel methodology named the texture coherence algorithm for seismic reservoir characterization, for short TEC algorithm. Besides, in-line and cross-line directions, it also calculates seismic coherency in 45° and 135° directions deviating from in-line. First, we clearly propose an optimization method and a criterion which structure graylevel co-occurrence matrix parameters in TEC algorithm. Furthermore, the matrix to measure the difference between multi-traces is constructed by texture technique, resulting in horizontal constraints of texture coherence attribute. Compared with the C1 algorithm, the TEC algorithm based on graylevel matrix is of the feature that is multi-direction information fusion and keeps the simplicity and high speed, even it is of multi-trace horizontal constraint, leading to significantly improved resolution. The practical application of the TEC algorithm shows that the TEC attribute is superior to both the C1 attribute and amplitude attribute in identifying faults and channels, and it is as successful as the third generation coherence.