期刊文献+
共找到230,117篇文章
< 1 2 250 >
每页显示 20 50 100
Joint Multi-User Detection with Weighting Factors for Unsourced Multiple Access
1
作者 Yu Liu Kai Niu Yuanjie Li 《Journal of Computer and Communications》 2023年第9期121-131,共11页
Multi-user detection techniques are currently being studied as highly promising technologies for improving the performance of unsourced multiple access systems. In this paper, we propose joint multi-user detection sch... Multi-user detection techniques are currently being studied as highly promising technologies for improving the performance of unsourced multiple access systems. In this paper, we propose joint multi-user detection schemes with weighting factors for unsourced multiple access. First, we introduce bidirectional weighting factors in the extrinsic information passing process between the multi-user detector based on belief propagation (BP) and the LDPC decoder. Second, we incorporate bidirectional weighting factors in the message passing process between the MAC nodes and the user variable nodes in BP- based multi-user detector. The proposed schemes select the optimal weighting factors through simulations. The simulation results demonstrate that the proposed schemes exhibit significant performance improvements in terms of block error rate (BLER) compared to traditional schemes. . 展开更多
关键词 COMMUNICATION Sparse IDMA multi-user detection Belief Propagation
下载PDF
Complex field network-coded cooperation based on multi-user detection in wireless networks 被引量:2
2
作者 Jing Wang Xiangyang Liu +1 位作者 Kaikai Chi Xiangmo Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期215-221,共7页
Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC... Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values. 展开更多
关键词 network coding complex field wireless network cooperative communication multi-user detection
下载PDF
Wavelet Packet Domain LMS Based Multi-User Detection 被引量:1
3
作者 刘鹏 安建平 《Journal of Beijing Institute of Technology》 EI CAS 2008年第4期484-488,共5页
An improved wavelet packet domain least mean square (IWPD-LMS) based adaptive muhiuser detection algorithm is proposed. The algorithm employs the wavelet packet transform to rewhiten the input data, and chooses the ... An improved wavelet packet domain least mean square (IWPD-LMS) based adaptive muhiuser detection algorithm is proposed. The algorithm employs the wavelet packet transform to rewhiten the input data, and chooses the best wavelet packet basis according to a novel convergence contribution function rather than the conventional Shannon entropy. The theoretic analyses show that the inadequacy of the eigenvalue spread of the tap-input correlation matrix is ameliorated, thus the convergence performance is improved greatly. The simulation result of convergence performance and bit error rate(BER) performance as a function of the signal power to noise power ratio(SNR) are presented finally to prove the validity of the proposed algorithm. 展开更多
关键词 multi-user detection least mean square (LMS) wavelet packet wavelet packet basis
下载PDF
RLS and LMS blind adaptive multi-user detection method and comparison in acoustic communication 被引量:7
4
作者 WANG Zhongqiu WANG Hongru MENG Qingming 《Instrumentation》 2015年第2期47-54,共8页
RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In s... RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication. 展开更多
关键词 recursive least squares least mean square method multi-user detection blind adaptive acoustic communication
下载PDF
Study of multi-rate multi-user detection based on supervision decision
5
作者 杨涛 谢剑英 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期413-418,共6页
Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework ... Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework with parallel interference cancellation, a supervision decision algorithm based on pre-decision of probabilistic data association (PDA) and hard decision is proposed. The detection performance is analyzed and simulation is implemented to show that the supervision decision algorithm improves the detection performance effectively. 展开更多
关键词 CDMA MULTI-RATE multi-user detection supervision decision.
下载PDF
Joint Channel and Multi-User Detection Empowered with Machine Learning
6
作者 Mohammad Sh.Daoud Areej Fatima +6 位作者 Waseem Ahmad Khan Muhammad Adnan Khan Sagheer Abbas Baha Ihnaini Munir Ahmad Muhammad Sheraz Javeid Shabib Aftab 《Computers, Materials & Continua》 SCIE EI 2022年第1期109-121,共13页
The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the... The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performsmulti-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate. 展开更多
关键词 Channel and multi-user detection minimum mean square error multiple-input and multiple-output minimum mean channel error bit error rate
下载PDF
ROLS-AWS algorithm used in RBF neural network for multi-user detection
7
作者 王永建 赵洪林 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期553-557,共5页
To improve the computational speed, the ROLS-AWS algorithm was employed in the RBF based MUD receiver. The radial basis function was introduced into the multi-user detection (MUD) firstly. Then a three-layer neural ... To improve the computational speed, the ROLS-AWS algorithm was employed in the RBF based MUD receiver. The radial basis function was introduced into the multi-user detection (MUD) firstly. Then a three-layer neural network demodulation spread-spectrum signal model in the synchronous Gauss channel was given and the multi-user detection receiver was analyzed intensively. Simulations by computer illustrate that the proposed RBF based MUD receiver employing the ROKS-AWS algorithm is better than conventional detectors and common BP neural network based MUD receivers on suppressing multiple access interference and near-far resistance. 展开更多
关键词 multi-user detection (MUD) RBF neural network ROLS-AWS algorithm
下载PDF
A New Approach to Multi-user Detection in DS-CDMA
8
作者 Tu Zhenyu 涂震宇 《High Technology Letters》 EI CAS 2001年第1期27-30,共4页
A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it ha... A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it has a higher computational complexity but better performance. 展开更多
关键词 DS-CDMA multi-user detection Optimum receiver Hopfield neural networks Minimum Cut (MC).
下载PDF
Dynamic multi-user detection scheme based on CVA-SSAOMP algorithm in uplink grant-free NOMA
9
作者 Xu Lei Tao Shangjin +3 位作者 Bai Shichao Zhang Jian Fang Hongyu Li Xiaohui 《High Technology Letters》 EI CAS 2021年第1期10-16,共7页
In the uplink grant-free non-orthogonal multiple access(NOMA)scenario,since the active user at the sender has a structured sparsity transmission characteristic,the compressive sensing recovery algorithm is initially a... In the uplink grant-free non-orthogonal multiple access(NOMA)scenario,since the active user at the sender has a structured sparsity transmission characteristic,the compressive sensing recovery algorithm is initially applied to the joint detection of the active user and the transmitted data.However,the existing compressed sensing recovery algorithms with unknown sparsity often require noise power or signal-to-noise ratio(SNR)as the priori conditions,which greatly reduces the algorithm adaptability in multi-user detection.Therefore,an algorithm based on cross validation aided structured sparsity adaptive orthogonal matching pursuit(CVA-SSAOMP)is proposed to realize multi-user detection in dynamic change communication scenario of channel state information(CSI).The proposed algorithm transforms the structured sparsity model into a block sparse model,and without the priori conditions above,the cross validation method in the field of statistics and machine learning is used to adaptively estimate the sparsity of active user through the residual update of cross validation.The simulation results show that,compared with the traditional orthogonal matching pursuit(OMP)algorithm,subspace pursuit(SP)algorithm and cross validation aided block sparsity adaptive subspace pursuit(CVA-BSASP)algorithm,the proposed algorithm can effectively improve the accurate estimation of the sparsity of active user and the performance of system bit error ratio(BER),and has the advantage of low-complexity. 展开更多
关键词 non-orthogonal multiple access(NOMA) multi-user detection cross validation structured sparsity(SP) orthogonal matching pursuit(OMP)
下载PDF
Quantum Multi-User Detection Based on Coherent State Signals
10
作者 Wenbin Yu Yinsong Xu +2 位作者 Wenjie Liu Alex Xiangyang Liu Baoyu Zheng 《Journal of Quantum Computing》 2019年第2期81-88,共8页
Multi-user detection is one of the important technical problems for moderncommunications. In the field of quantum communication, the multi-access channel onwhich we apply the technology of quantum information processi... Multi-user detection is one of the important technical problems for moderncommunications. In the field of quantum communication, the multi-access channel onwhich we apply the technology of quantum information processing is still an openquestion. In this work, we investigate the multi-user detection problem based on thebinary coherent-state signals whose communication way is supposed to be seen as aquantum channel. A binary phase shift keying model of this multi-access channel isstudied and a novel method of quantum detection proposed according to the conclusionof the quantum measurement theory. As a result, the average interference betweendeferent users is presented and the average error probability of the quantum detection isderived theoretically. Finally, we show the maximum channel capacity of this effectivedetection for a two-access quantum channel. 展开更多
关键词 multi-user detection multi-access channels quantum communication quantum information processing
下载PDF
Multi-User Detection for Spatial Modulation toward 5G Wireless Communications 被引量:1
11
作者 Shiwen Fan, Yue Xiao +3 位作者 Xia Lei Rong Shi Ke Deng Shaoqian Li 《China Communications》 SCIE CSCD 2017年第12期100-110,共11页
Spatial modulation(SM) is a class of novel multiple-input multiple-output(MIMO) techniques toward future wireless communications,which activates only one transmit antenna in each time slot,so as to reduce the number o... Spatial modulation(SM) is a class of novel multiple-input multiple-output(MIMO) techniques toward future wireless communications,which activates only one transmit antenna in each time slot,so as to reduce the number of RF chains for saving the implement cost.Meanwhile,considering its application in 5G systems with multiple users,the detection of multi-user spatial modulation has drawn greater attention.In this paper,a pair of efficient detectors are proposed for multi-user spatial modulation.Specially,a threshold-aided approximate message passing(T-AMP) detector is proposed with the purpose of reducing the computational complexity of traditional structured approximate message passing(Str-AMP) detector.In addition,a novel probability sorting aided approximate message passing detector,called probability-ranking-aided AMP detector(P-AMP),is also proposed with the purpose of improving the performance.Simulation results show that the proposed T-AMP detector is able to achieve similar performance as traditional StrAMP with lower complexity,while the proposed P-AMP detector exhibits a better symbol error rate(SER) performance with similar complexity. 展开更多
关键词 multi-user spatial modulation PROBABILITY SORTING MESSAGE passing.
下载PDF
基于改进Detection Transformer的棉花幼苗与杂草检测模型研究
12
作者 冯向萍 杜晨 +3 位作者 李永可 张世豪 舒芹 赵昀杰 《计算机与数字工程》 2024年第7期2176-2182,共7页
基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transforme... 基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transformer注意力模块,提高模型对特征图目标形变的处理能力。提出新的降噪训练机制,解决了二分图匹配不稳定问题。提出混合查询选择策略,提高解码器对目标类别和位置信息的利用效率。使用Swin Transformer作为网络主干,提高模型特征提取能力。通过对比原网络,论文提出的模型方法在训练过程中表现出更快的收敛速度,并且在准确率方面提高了6.7%。 展开更多
关键词 目标检测 detection Transformer 棉花幼苗 杂草检测
下载PDF
Intelligent multi-user detection using an artificial immune system 被引量:5
13
作者 GONG MaoGuo, JIAO LiCheng, MA WenPing & MA JingJing Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China Institute of Intelligent Information Processing, Xidian University, Xi’an 710071, China 《Science in China(Series F)》 2009年第12期2342-2353,共12页
Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clona... Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clonal selection algorithm, to solve the multi-user detection problem in code-division multipleaccess communications system based on the maximum-likelihood decision rule. Through proportional cloning, hypermutation, clonal selection and clonal death, the new method performs a greedy search which reproduces individuals and selects their improved maturated progenies after the affinity maturation process. Theoretical analysis indicates that the clonal selection algorithm is suitable for solving the multi-user detection problem. Computer simulations show that the proposed approach outperforms some other approaches including two genetic algorithm-based detectors and the matched filters detector, and has the ability to find the most likely combinations. 展开更多
关键词 artificial immune systems clonal selection multi-user detection code-division multiple-access genetic algorithm
原文传递
The Applicative Investigation of Adaptive BP Networks for Multi-user Detection in Asynchronous DS-CDMA Mobile Communications 被引量:2
14
作者 NI Liang-fang, ZHENG Bao-yu, WU Xin-yu (Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China) 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2003年第1期1-8,14,共9页
Three-layer Adaptive Back-Propagation Neural Networks(TABPNN) are employed for the demodulation of spread spectrum signals in a multiple-access environment. A configuration employing three-layer adaptive Back-propagat... Three-layer Adaptive Back-Propagation Neural Networks(TABPNN) are employed for the demodulation of spread spectrum signals in a multiple-access environment. A configuration employing three-layer adaptive Back-propagation neural networks is put forward for the demodulation of spread-spectrum signals in asynchronous Gaussian channels. The theoretical arguments and practical performance based on the neural networks are analyzed. The results show that whether the resistance to the multiple access interference or the robust to near-far effects, the proposed detector significantly outperforms not only the conventional detector but also the BP neural networks detector and is comparable to the optimum detector. 展开更多
关键词 code division multiple access multi-user detection adaptive BP networks
原文传递
Iterative multi-user detection and decoding for space-time block coding systems 被引量:1
15
作者 JIN Yi-dan ZHANG Feng WU Wei-ling 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2006年第4期24-28,共5页
To restrain the interference of co-channel users using space-time block coding (STBC), the proposed Gaussian-forcing soft decision multi-user detection (GFSDMUD) algorithm is applied in fiat-fading channels by usi... To restrain the interference of co-channel users using space-time block coding (STBC), the proposed Gaussian-forcing soft decision multi-user detection (GFSDMUD) algorithm is applied in fiat-fading channels by using the relation among the users' signals, which can enhance the capacity by introducing co-channel users. During iterations, extrinsic information is calculated and exchanged between a soft multi-user detector and a bank of turbo decoders to achieve refined estimates of the users' signals. The simulations show that the proposed iterative receiver techniques provide significant performance improvement around 2 dB over conventional noniterative methods. Furthermore, iterative multi-user space-time processing techniques offer substantial performance gains around 8 dB by adding the number of receiver antennas from 4 to 6, and the system performance can be enhanced by using this strategy in multi-user STBC systems, which is very important for enlarging the system capacity. 展开更多
关键词 STBC multi-user detection Turbo processing gaussian-Forcing soft decision Turbo channel decoding
原文传递
A Hybrid Intrusion Detection Method Based on Convolutional Neural Network and AdaBoost 被引量:1
16
作者 Wu Zhijun Li Yuqi Yue Meng 《China Communications》 SCIE CSCD 2024年第11期180-189,共10页
To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection... To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data. 展开更多
关键词 ADABOOST CNN detection rate false positive rate feature extraction intrusion detection
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
17
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 Network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Automated Vulnerability Detection of Blockchain Smart Contacts Based on BERT Artificial Intelligent Model 被引量:1
18
作者 Feng Yiting Ma Zhaofeng +1 位作者 Duan Pengfei Luo Shoushan 《China Communications》 SCIE CSCD 2024年第7期237-251,共15页
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De... The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy. 展开更多
关键词 BERT blockchain smart contract vulnerability detection
下载PDF
Esophageal cancer screening,early detection and treatment:Current insights and future directions 被引量:3
19
作者 Hong-Tao Qu Qing Li +7 位作者 Liang Hao Yan-Jing Ni Wen-Yu Luan Zhe Yang Xiao-Dong Chen Tong-Tong Zhang Yan-Dong Miao Fang Zhang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1180-1191,共12页
Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately ... Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately 604000 new cases of esophageal cancer,resulting in 544000 deaths.The 5-year survival rate hovers around a mere 15%-25%.Notably,distinct variations exist in the risk factors associated with the two primary histological types,influencing their worldwide incidence and distribution.Squamous cell carcinoma displays a high incidence in specific regions,such as certain areas in China,where it meets the cost-effect-iveness criteria for widespread endoscopy-based early diagnosis within the local population.Conversely,adenocarcinoma(EAC)represents the most common histological subtype of esophageal cancer in Europe and the United States.The role of early diagnosis in cases of EAC originating from Barrett's esophagus(BE)remains a subject of controversy.The effectiveness of early detection for EAC,particularly those arising from BE,continues to be a debated topic.The variations in how early-stage esophageal carcinoma is treated in different regions are largely due to the differing rates of early-stage cancer diagnoses.In areas with higher incidences,such as China and Japan,early diagnosis is more common,which has led to the advancement of endoscopic methods as definitive treatments.These techniques have demonstrated remarkable efficacy with minimal complications while preserving esophageal functionality.Early screening,prompt diagnosis,and timely treatment are key strategies that can significantly lower both the occurrence and death rates associated with esophageal cancer. 展开更多
关键词 Esophageal cancer SCREENING Early detection Treatment Endoscopic mucosal resection Endoscopic submucosal dissection
下载PDF
Feature extraction for machine learning-based intrusion detection in IoT networks 被引量:1
20
作者 Mohanad Sarhan Siamak Layeghy +2 位作者 Nour Moustafa Marcus Gallagher Marius Portmann 《Digital Communications and Networks》 SCIE CSCD 2024年第1期205-216,共12页
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ... A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field. 展开更多
关键词 Feature extraction Machine learning Network intrusion detection system IOT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部