Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the remov...Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the removal of Cr(VI) in aqueous solutions. The effects of adsorbent dosage, the concentration of Cr(VI) in aqueous solution, temperature, and pH value on the removal efficiency were studied. Results showed that the adsorption capacity of the magnetic multi-wall carbon nanotubes increased with the initial Cr(VI) concentration, but decreased with the increase of adsorbent dosage. The adsorption amount increased with contact time. The adsorption kinetics were best represented by the pseudo second-order kinetic model, and the adsorption isotherms indicated that the Langmuir model better reflected the adsorption process. The ob- tained calculation results for the Gibbs free energy revealed that the adsorption was a spontaneous and endothermic process. The enthalpy deviation was 3.835 kJ.mol 1. The magnetic multi-wall carbon nanotubes showed significant potential for application in adsorption of heavy metal ions.展开更多
A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electroca...A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electrocatalytic oxidation of 6-mercaptopurine(6-MP). The CME can be used as the working electrode in the liquid chromatography for the determination of 6-MP. The peak current of 6-MP is linearly changed with its concentration ranging from 4.0×10 -7 to 1.0×10 -4 mol/L with the calculated detection limit (S/N=3) of 2.0×10 -7 mol/L. Coupled with microdialysis sampling, the method has been successfully applied to assessing the content of 6-MP in rat blood.展开更多
In the present work, Dye Sensitized Solar Cells (DSSCs) have been fabricated by utilizing a dense layer of photoelctrode cadmium sulfide thin film (CdS) as n-type, which prepared by spray coating, while p-type electro...In the present work, Dye Sensitized Solar Cells (DSSCs) have been fabricated by utilizing a dense layer of photoelctrode cadmium sulfide thin film (CdS) as n-type, which prepared by spray coating, while p-type electrode was multi-wall carbon nanotubes/graphene (MWNT-G) composites. The experimental results showed the higher energy conversion efficiency for CdS/MWNT-G was 0.056% in comparison with the others, which were CdS/MWNT with 0.044% and CdS/G with 0.037% respectively, which referred to improvement in the conductivity by using MWNT-G. The microstructure and nanostructure of CdS, MWNT, G, and MWNT-G nanocomposite were carried out by employing Scanning Electron Microscopy (SEM). X-Ray Diffraction (XRD) has been used to get crystal size of CdS, Raman scattering, and optical absorption also used for characterizations the samples. This study promised to increase and enhance the conversion efficiency of photovoltaic devices.展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
Nickel hydroxide doped with multi-wall carbon nanotubes(MCNTs)was synthesized by chemical coprecipitation method. The MCNTs doped nickel hydroxide was used as the electrochemical active material in the positive electr...Nickel hydroxide doped with multi-wall carbon nanotubes(MCNTs)was synthesized by chemical coprecipitation method. The MCNTs doped nickel hydroxide was used as the electrochemical active material in the positive electrodes of rechargeable alkaline batteries.The powder X-ray diffraction(XRD)analysis shows that the addition of MCNTs induces more structural defect within the crystal lattice of the nickel hydroxide.The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS) tests demonstrate the better reaction reversibility and lower electrochemical impedance of MCNTs doped nickel hydroxide as compared with the pure nickel hydroxide.The charge/discharge tests show that MCNTs addition can improve the specific discharge capacity and increase the discharge voltage of the nickel hydroxide electrode.展开更多
Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to s...Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to synthesize MWNTs reinforced aluminum composites. In hot press sintered MWNTs/Al composites, MWNTs agglomerates distribute along aluminum powders and have low bonding strength with aluminum. But MWNTs agglomerates distribute evenly in the squeeze cast MWNTs/Al composites. Some dispersed nanotubes bond well with aluminum matrix and few dislocations can be found in the nanotube areas, which implies little thermal residual stress in squeeze cast MWNTs/Al composites. This indicates that the strengthen mechanisms in nanometer sized MWNTs/Al composites may be different from that in micrometer sized whisker composites.展开更多
Long chain phosphate esters bearing at least one or two aryl groups have been synthesized and used for the preparation of stable multi-walled carbon nanotube (MWCNT) hybrids. The non-covalent interaction ester/MWCNT h...Long chain phosphate esters bearing at least one or two aryl groups have been synthesized and used for the preparation of stable multi-walled carbon nanotube (MWCNT) hybrids. The non-covalent interaction ester/MWCNT has been investigated by several techniques (SEM, UV-vis, 31P-NMR, RAMAN). The used phosphate ester derivatives demonstrated the ability to produce an excellent dispersion of MWCNT in CHCl3. The obtained dispersions showed a great stability from one to at least three weeks in the range of concentration considered. Thermal analysis showed an increase in the decomposition temperature for the hybrids with respect to pristine MWCNT.展开更多
Poly(methyl methacrylate)/poly(methacrylamide) copolymer (PMMA-co-PMAA) was synthesized by a free radical copolymerization of MMA and MAA monomers in methylethyl ketone using AIBN as radical initiator. Multi-wall carb...Poly(methyl methacrylate)/poly(methacrylamide) copolymer (PMMA-co-PMAA) was synthesized by a free radical copolymerization of MMA and MAA monomers in methylethyl ketone using AIBN as radical initiator. Multi-wall carbon nanotubes (MWCNT) were oxidized in KMnO4 acidic suspension. Carboxyl groups on the surface oxidized MWCNT were reacted with primary amide group of PMMA-co-PMAA copolymer in MEK solution under ultrasound to form polymer brush on the surface of MWCNT. With the help of TG analyses the amount of covalently grafted PMMA-co-PMAA copolymer onto MWCNT surface was determined as ?47 wt%. TEM analyses identified thin co-polymer layer adhered onto MWCNT surface with average thickness ?5 nm.展开更多
In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum micr...In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum microhardness values of central and edge from the composites with 1 wt.%MWCNTs reached HV 130.0 and HV 363.5,which were 43.9%and 39.5%higher than those of the original samples,respectively.With the same content of MWCNTs,its electrical conductivity achieved 3.42×10^(7) S/m,which was increased by 78.1%compared with that of original samples.The synergistic improvement of mechanical and electrical properties is attributed to the obtained microstructure with increased homogenization and refinement,as well as improved interfacial bonding and reduced porosity.The strengthening mechanisms include dispersion and refinement strengthening for mechanical properties,as well as reduced electron scattering for electrical properties.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damage...Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.展开更多
Selective oxidation of glycerol is a hot topic.Increased biodiesel production has led to glycerol oxidation over Au- and Pt-based catalysts being widely studied.However,Pt catalysts suffer from deactivation because of...Selective oxidation of glycerol is a hot topic.Increased biodiesel production has led to glycerol oxidation over Au- and Pt-based catalysts being widely studied.However,Pt catalysts suffer from deactivation because of weak metal-support interactions.In this study,multi-walled carbon nanotube(MWCNTs)-pillared nitrogen-doped graphene(NG) was prepared by direct pyrolysis of melamine on MWCNTs,and the synthesized NG-MWCNT composite was used as the support for Pt.Characterization results showed that the surface area(173 m^2/g) and pore volume of the NG-MWCNT composite were greater than those of bare MWCNTs and the separated melamine pyrolysis product(CH_x).Pt(1.4±0.4 nm) dispersion on the NG-MWCNTs was favorable and the Pt/NG-MWCNT catalyst was highly active and selective in the oxidation of glycerol to glyceric acid(GLYA) in base-free aqueous solution.For example,the conversion of glycerol reached 64.4% with a GLYA selectivity of 81.0%,whereas the conversions of glycerol over Pt/MWCNTs and Pt/CN_x were 29.0% and 31.6%,respectively.The unique catalytic activity of the Pt/NG-MWCNTs is attributed to well-dispersed Pt clusters on the NG-MWCNTs and the electron-donating effect of the nitrogen dopant in the NG-MWCNTs.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
Novel dopamine-derivative compound,3,5-diamino-N-(3,4-dihydroxyphenethyl)benzamide(3,5-DAB)was prepared in two steps.In the first step dopamine hydrochloride was reacted with 3,5-dinitrobenzoyl chloride in the pre...Novel dopamine-derivative compound,3,5-diamino-N-(3,4-dihydroxyphenethyl)benzamide(3,5-DAB)was prepared in two steps.In the first step dopamine hydrochloride was reacted with 3,5-dinitrobenzoyl chloride in the presence of propylene oxide.In the second step reduction of nitro groups resulted in preparation of 3,5-DAB in quantitative yield.This material was characterized using conventional spectroscopic methods such as FT-IR and ~1H NMR.In addition,the redox response of a modified carbon nanotubes paste electrode of 3,5-DAB was investigated in aqueous solution at a neutral pH.The result showed that the electrode process has a quasi-reversible response,withΔE_p,greater than the(59/n) mV expected for a reversible system.Finally,the diffusion coefficient for redox process in paraffin oil matrix obtained using chronoamperometry methods.展开更多
The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various ...The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various weight contents.The results of mechanical properties of the MWCNTs/SAC composites indicated that the addition of 0.08 wt% MWCNTs can improve the SAC compressive strength, flexural strength, and bend-press ratio by 15.54%, 52.38%, and 31.30% at maximum, respectively. The degree of SAC hydration and porosity and pore size distribution of the matrix were measured by X-ray diffraction(XRD), thermal analysis(TG/DTG), and mercury intrusion porosimetry(MIP). Results show that the addition of MWCNTs in SAC composites can promote the hydration of SAC and the formation of C-S-H gel, reduce the porosity and refine the pore size distribution of the matrix. The microstructure was characterized by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). It is found that the MWCNTs have been dispersed homogeneously between the hydration products of SAC paste and act as bridges and networks between cracks and voids, which prevents the development of the cracks and transfers the load.展开更多
In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCN...In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCNT mass ratios. The chemical structure of the ternary composites was characterized by Fourier transform infrared spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy. Scanning electron microscope and high-resolution transmission electron microscopy were used to observe the morphology of the ternary composites. The results showed that the polyaniline PANI layer was prepared successfully and it covered Ag/MWCNTs completely. In addition, Ag nanoparticles between the MWCNT core and the PANI layer existed in the form of elemental crystal, which could contribute to the electrochemical performance of the composites. Then we prepared the composite electrodes and studied their electrochemical behaviors in 1 mol/L KOH. It was found that these composite electrodes had very low impedance, and exhibited lower resistance, higher electrochemical activity, and better cyclic stability compared with pure PANI electrode. Particularly, when the mass ratio of aniline to Ag/MWCNTs was 5:5, the composite electrode displayed a small equivalent series resistance (0.23 Ω) and low interfacial charge transfer resistance (〈0.25 Ω), as well as 160 F/g of the maximum specific capacitance at a current density of 0.25 A/g in KOH solution. We could conclude that the composite material had potential applications as cathode materials for lithium batteries and supercapacitors.展开更多
Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Metho...Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations Is were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.展开更多
Pd nanoparticles(Pd-NPs)were prepared and directly anchored on the surface of multi-walled carbon nanotubes(MWCNTs)in the absence of chemical reduction agent,where MWCNTs were used as both the chemical reduction agent...Pd nanoparticles(Pd-NPs)were prepared and directly anchored on the surface of multi-walled carbon nanotubes(MWCNTs)in the absence of chemical reduction agent,where MWCNTs were used as both the chemical reduction agent and the support substrate of Pd-NPs.Effect of various surfactants on the in situ deposition of PdNPs on MWCNTs was investigated.When MWCNTs were modified with a cationic surfactant(hexadecyl trimethyl ammonium bromide,CTAB),the amount of the Pd-NPs(Pd-NP/CTAB-MWCNT)generated by such an in situ deposition method gets a notable increase,and the size of the as-synthesized Pd-NPs becomes smaller,compared with those in the absence of any surfactant(Pd-NP/MWCNT)or in the presence of an anionic surfactant SDS(Pd-NP/SDS-MWCNT)and a neutral surfactant OP(PdNP/OP-MWCNT).Results show that the MWCNTs modified with CTAB are propitious to the in situ reduction of Pd2?.Among the prepared catalysts,Pd-NP/CTABMWCNT displays the highest electroactivity for ethanol oxidation in alkaline media.展开更多
基金supported by the Research Grant of the Phytochemistry Key Laboratory of Shaanxi Province(Grant No.13JS005)the Project of Baoji University of Arts and Sciences(Grant No.YK1417)the Project of Baoji Sciences and Technology Bureau(Grant No.2013R7-5)
文摘Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the removal of Cr(VI) in aqueous solutions. The effects of adsorbent dosage, the concentration of Cr(VI) in aqueous solution, temperature, and pH value on the removal efficiency were studied. Results showed that the adsorption capacity of the magnetic multi-wall carbon nanotubes increased with the initial Cr(VI) concentration, but decreased with the increase of adsorbent dosage. The adsorption amount increased with contact time. The adsorption kinetics were best represented by the pseudo second-order kinetic model, and the adsorption isotherms indicated that the Langmuir model better reflected the adsorption process. The ob- tained calculation results for the Gibbs free energy revealed that the adsorption was a spontaneous and endothermic process. The enthalpy deviation was 3.835 kJ.mol 1. The magnetic multi-wall carbon nanotubes showed significant potential for application in adsorption of heavy metal ions.
文摘A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electrocatalytic oxidation of 6-mercaptopurine(6-MP). The CME can be used as the working electrode in the liquid chromatography for the determination of 6-MP. The peak current of 6-MP is linearly changed with its concentration ranging from 4.0×10 -7 to 1.0×10 -4 mol/L with the calculated detection limit (S/N=3) of 2.0×10 -7 mol/L. Coupled with microdialysis sampling, the method has been successfully applied to assessing the content of 6-MP in rat blood.
文摘In the present work, Dye Sensitized Solar Cells (DSSCs) have been fabricated by utilizing a dense layer of photoelctrode cadmium sulfide thin film (CdS) as n-type, which prepared by spray coating, while p-type electrode was multi-wall carbon nanotubes/graphene (MWNT-G) composites. The experimental results showed the higher energy conversion efficiency for CdS/MWNT-G was 0.056% in comparison with the others, which were CdS/MWNT with 0.044% and CdS/G with 0.037% respectively, which referred to improvement in the conductivity by using MWNT-G. The microstructure and nanostructure of CdS, MWNT, G, and MWNT-G nanocomposite were carried out by employing Scanning Electron Microscopy (SEM). X-Ray Diffraction (XRD) has been used to get crystal size of CdS, Raman scattering, and optical absorption also used for characterizations the samples. This study promised to increase and enhance the conversion efficiency of photovoltaic devices.
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金Project(20090450188)supported by China Postdoctoral Science FoundationProject supported by Postdoctoral Science Foundation of Central South University,ChinaProject(0991247)supported by Natural Science Foundation of Guangxi Province,China
文摘Nickel hydroxide doped with multi-wall carbon nanotubes(MCNTs)was synthesized by chemical coprecipitation method. The MCNTs doped nickel hydroxide was used as the electrochemical active material in the positive electrodes of rechargeable alkaline batteries.The powder X-ray diffraction(XRD)analysis shows that the addition of MCNTs induces more structural defect within the crystal lattice of the nickel hydroxide.The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS) tests demonstrate the better reaction reversibility and lower electrochemical impedance of MCNTs doped nickel hydroxide as compared with the pure nickel hydroxide.The charge/discharge tests show that MCNTs addition can improve the specific discharge capacity and increase the discharge voltage of the nickel hydroxide electrode.
文摘Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to synthesize MWNTs reinforced aluminum composites. In hot press sintered MWNTs/Al composites, MWNTs agglomerates distribute along aluminum powders and have low bonding strength with aluminum. But MWNTs agglomerates distribute evenly in the squeeze cast MWNTs/Al composites. Some dispersed nanotubes bond well with aluminum matrix and few dislocations can be found in the nanotube areas, which implies little thermal residual stress in squeeze cast MWNTs/Al composites. This indicates that the strengthen mechanisms in nanometer sized MWNTs/Al composites may be different from that in micrometer sized whisker composites.
文摘Long chain phosphate esters bearing at least one or two aryl groups have been synthesized and used for the preparation of stable multi-walled carbon nanotube (MWCNT) hybrids. The non-covalent interaction ester/MWCNT has been investigated by several techniques (SEM, UV-vis, 31P-NMR, RAMAN). The used phosphate ester derivatives demonstrated the ability to produce an excellent dispersion of MWCNT in CHCl3. The obtained dispersions showed a great stability from one to at least three weeks in the range of concentration considered. Thermal analysis showed an increase in the decomposition temperature for the hybrids with respect to pristine MWCNT.
文摘Poly(methyl methacrylate)/poly(methacrylamide) copolymer (PMMA-co-PMAA) was synthesized by a free radical copolymerization of MMA and MAA monomers in methylethyl ketone using AIBN as radical initiator. Multi-wall carbon nanotubes (MWCNT) were oxidized in KMnO4 acidic suspension. Carboxyl groups on the surface oxidized MWCNT were reacted with primary amide group of PMMA-co-PMAA copolymer in MEK solution under ultrasound to form polymer brush on the surface of MWCNT. With the help of TG analyses the amount of covalently grafted PMMA-co-PMAA copolymer onto MWCNT surface was determined as ?47 wt%. TEM analyses identified thin co-polymer layer adhered onto MWCNT surface with average thickness ?5 nm.
基金supported by Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(No.IIMDKFJJ-21-10)China Postdoctoral Science Foundation(No.2018T110993).
文摘In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum microhardness values of central and edge from the composites with 1 wt.%MWCNTs reached HV 130.0 and HV 363.5,which were 43.9%and 39.5%higher than those of the original samples,respectively.With the same content of MWCNTs,its electrical conductivity achieved 3.42×10^(7) S/m,which was increased by 78.1%compared with that of original samples.The synergistic improvement of mechanical and electrical properties is attributed to the obtained microstructure with increased homogenization and refinement,as well as improved interfacial bonding and reduced porosity.The strengthening mechanisms include dispersion and refinement strengthening for mechanical properties,as well as reduced electron scattering for electrical properties.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金Project(91026018)supported by the National Natural Science Foundation of ChinaProject(20110111110015)supported by the Doctoral Fund of Ministry of Education of China
文摘Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.
基金financially supported by the National Natural Science Foundation of China(21473155,21273198,21073159)Natural Science Foundation of Zhejiang Province(L12B03001)the foundation from State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology(GCTKF2014009)~~
文摘Selective oxidation of glycerol is a hot topic.Increased biodiesel production has led to glycerol oxidation over Au- and Pt-based catalysts being widely studied.However,Pt catalysts suffer from deactivation because of weak metal-support interactions.In this study,multi-walled carbon nanotube(MWCNTs)-pillared nitrogen-doped graphene(NG) was prepared by direct pyrolysis of melamine on MWCNTs,and the synthesized NG-MWCNT composite was used as the support for Pt.Characterization results showed that the surface area(173 m^2/g) and pore volume of the NG-MWCNT composite were greater than those of bare MWCNTs and the separated melamine pyrolysis product(CH_x).Pt(1.4±0.4 nm) dispersion on the NG-MWCNTs was favorable and the Pt/NG-MWCNT catalyst was highly active and selective in the oxidation of glycerol to glyceric acid(GLYA) in base-free aqueous solution.For example,the conversion of glycerol reached 64.4% with a GLYA selectivity of 81.0%,whereas the conversions of glycerol over Pt/MWCNTs and Pt/CN_x were 29.0% and 31.6%,respectively.The unique catalytic activity of the Pt/NG-MWCNTs is attributed to well-dispersed Pt clusters on the NG-MWCNTs and the electron-donating effect of the nitrogen dopant in the NG-MWCNTs.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘Novel dopamine-derivative compound,3,5-diamino-N-(3,4-dihydroxyphenethyl)benzamide(3,5-DAB)was prepared in two steps.In the first step dopamine hydrochloride was reacted with 3,5-dinitrobenzoyl chloride in the presence of propylene oxide.In the second step reduction of nitro groups resulted in preparation of 3,5-DAB in quantitative yield.This material was characterized using conventional spectroscopic methods such as FT-IR and ~1H NMR.In addition,the redox response of a modified carbon nanotubes paste electrode of 3,5-DAB was investigated in aqueous solution at a neutral pH.The result showed that the electrode process has a quasi-reversible response,withΔE_p,greater than the(59/n) mV expected for a reversible system.Finally,the diffusion coefficient for redox process in paraffin oil matrix obtained using chronoamperometry methods.
基金Funded by the National Natural Science Foundation of China(No.51578108)Special Fund for Scientific Research in the Public Interest by Ministry of Water Resource of the People’s Republic of China(No.201501003)Dalian Projects of Construction Technology(No.201307)
文摘The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various weight contents.The results of mechanical properties of the MWCNTs/SAC composites indicated that the addition of 0.08 wt% MWCNTs can improve the SAC compressive strength, flexural strength, and bend-press ratio by 15.54%, 52.38%, and 31.30% at maximum, respectively. The degree of SAC hydration and porosity and pore size distribution of the matrix were measured by X-ray diffraction(XRD), thermal analysis(TG/DTG), and mercury intrusion porosimetry(MIP). Results show that the addition of MWCNTs in SAC composites can promote the hydration of SAC and the formation of C-S-H gel, reduce the porosity and refine the pore size distribution of the matrix. The microstructure was characterized by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). It is found that the MWCNTs have been dispersed homogeneously between the hydration products of SAC paste and act as bridges and networks between cracks and voids, which prevents the development of the cracks and transfers the load.
基金This work was supported by the Doctoral Program of Higher Education of China (No.20110010110007) and the Beijing Municipal Natural Science Foundation (No.2102035).
文摘In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCNT mass ratios. The chemical structure of the ternary composites was characterized by Fourier transform infrared spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy. Scanning electron microscope and high-resolution transmission electron microscopy were used to observe the morphology of the ternary composites. The results showed that the polyaniline PANI layer was prepared successfully and it covered Ag/MWCNTs completely. In addition, Ag nanoparticles between the MWCNT core and the PANI layer existed in the form of elemental crystal, which could contribute to the electrochemical performance of the composites. Then we prepared the composite electrodes and studied their electrochemical behaviors in 1 mol/L KOH. It was found that these composite electrodes had very low impedance, and exhibited lower resistance, higher electrochemical activity, and better cyclic stability compared with pure PANI electrode. Particularly, when the mass ratio of aniline to Ag/MWCNTs was 5:5, the composite electrode displayed a small equivalent series resistance (0.23 Ω) and low interfacial charge transfer resistance (〈0.25 Ω), as well as 160 F/g of the maximum specific capacitance at a current density of 0.25 A/g in KOH solution. We could conclude that the composite material had potential applications as cathode materials for lithium batteries and supercapacitors.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(200800191013)the Fundamental Research Funds for the Central Universities
文摘Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations Is were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.
基金supported by the National Natural Science Foundation of China (Nos. 21376070 and 20876038)Scientific Research Fund of Hunan Provincial Edu- cation Department (No. 11K023)Hunan Provincial Natural Science Foundation of China (14JJ2096)
文摘Pd nanoparticles(Pd-NPs)were prepared and directly anchored on the surface of multi-walled carbon nanotubes(MWCNTs)in the absence of chemical reduction agent,where MWCNTs were used as both the chemical reduction agent and the support substrate of Pd-NPs.Effect of various surfactants on the in situ deposition of PdNPs on MWCNTs was investigated.When MWCNTs were modified with a cationic surfactant(hexadecyl trimethyl ammonium bromide,CTAB),the amount of the Pd-NPs(Pd-NP/CTAB-MWCNT)generated by such an in situ deposition method gets a notable increase,and the size of the as-synthesized Pd-NPs becomes smaller,compared with those in the absence of any surfactant(Pd-NP/MWCNT)or in the presence of an anionic surfactant SDS(Pd-NP/SDS-MWCNT)and a neutral surfactant OP(PdNP/OP-MWCNT).Results show that the MWCNTs modified with CTAB are propitious to the in situ reduction of Pd2?.Among the prepared catalysts,Pd-NP/CTABMWCNT displays the highest electroactivity for ethanol oxidation in alkaline media.