Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order...Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values.展开更多
Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously anal...Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.展开更多
A microwave power-combining system composed of two Panasonic 2M244-M1 magnetrons based on master–slave injection-locking is demonstrated in this paper. The principle of master–slave injection-locking and the locking...A microwave power-combining system composed of two Panasonic 2M244-M1 magnetrons based on master–slave injection-locking is demonstrated in this paper. The principle of master–slave injection-locking and the locking condition are theoretical analyzed. Experimental results are consistent with the theoretical analysis and the experimental combined efficiency is higher than 96%. Compared with the external-injection-locked system, the power-combining based on the master–slave injection-locking magnetron is superior by taking out the external solid-state driver and the real-time phase control system. Thus, this power-combining system has great potential for obtaining a high efficiency, high stability, low cost, and high power microwave source.展开更多
In general, the dependence of the logarithm of the emissivity upon wavelength is usually used in the treatment of data measured by multi-wavelength pyrometer. In this paper, the suitability of this expression for diff...In general, the dependence of the logarithm of the emissivity upon wavelength is usually used in the treatment of data measured by multi-wavelength pyrometer. In this paper, the suitability of this expression for different materials has been examined. Further more, an effective method for automatically searching the mathematical model between emissivity and wavelength has been procsed. The calculated results show that the accuracy is improved by using this data treatment method.展开更多
Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realiz...Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.展开更多
We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabri...We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched In Ga As grown on InP. Under a 1.55 μm multimode In GaAs/In GaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.展开更多
Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time.Multi-wavelength Raman lasers at...Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time.Multi-wavelength Raman lasers at 1168.4,1176,1178.7,and 1201.6 nm are achieved by the first Stokes shift of the multi-wavelength fundamental lasers at 1064,1066.7,1073.6,1084,and 1085.6 nm with two Raman shifts of 890 and 816 cm^-1.A maximum Raman output power of 2.56 W is achieved through the use of a 20-mm-long composite crystal,with a corresponding optical conversion efficiency of 9.8%.The polarization directions of different fundamental and Raman lasers are investigated and found to be orthogonalπandσpolarizations.These orthogonally polarized multi-wavelength lasers with small wavelength separation pave the way to the development of a potential laser source for application in spectral analysis,laser radar and THz generation.展开更多
This investigation developed a new method for determining metal complex's property containing the stepwise real absorptivity(epsilon) and stability constant (K-m). The correction equation of the multi-wavelength s...This investigation developed a new method for determining metal complex's property containing the stepwise real absorptivity(epsilon) and stability constant (K-m). The correction equation of the multi-wavelength spectral absorption was established for the simultaneous determination of various complexes to give high accuracy for trace analysis. This method was more acceptable in theory and simpler in operation than the classical methods.展开更多
Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect ci...Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect circulator on the injection ratio. Besides, the locking range of the injection-locked magnetron with the mismatched circulator is deduced by functional operation. In addition, the phase differential equation and the locked bandwidth of the injection-locked system with a mismatched circulator are compared with those of the small injection-ratio case with a perfect circulator. The in- fluence of the circulator reflection coefficient on the injection-locked magnetron is also analyzed by numerical calculation. Theoretical analysis shows that the decrement of the locked bandwidth is less than 1% and decrement of the stable phase difference is less than 1.2% when the reflection coefficient is less than 0.1.展开更多
A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving th...A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving the ambiguity problem, a more reliable result is achieved by using weighted average of measurement results from three different wavelengths, where the weight is dependent upon spacing. Fringe-bunching correction algorithm (FBC) and spot-tilling technique are adopted to suppress calibration and random errors. Moreover, incident bandwidth correction (IBC) method is introduced to compensate the error caused by low monochromaticity of incident light. Based on dynamic flying height tester (DFHT Ⅱ), with the redesigned of photo-electric conversion and signal acquirement module, an instrument has been developed. And comparing the experimental data from the instrument with those from a KLA-FHT D6, the discrepancy is less than 5%. It indicates that the instrument is suitable to perform ultra-low flying height measurement and satisfies the reauirement of magnetic heads manufacturing.展开更多
An injection-Locked divider(ILD)can provide good synchronization at lower inputsignal to noise ratio,which is its advantage over other types of divider.The general expressionof phase equation and equivalent model are ...An injection-Locked divider(ILD)can provide good synchronization at lower inputsignal to noise ratio,which is its advantage over other types of divider.The general expressionof phase equation and equivalent model are presented for the ILD with an input additive noise.In the absence of noise the performance of the phase-modulated signal through the ILD andsynchronous ranges of the ILD are given.The effects of the additive noise on the ILD arediscuued.The injection-locked amplifier(ILA)is only a particular case in which n=1,thereforethe given results arc applicable to the ILA.展开更多
A method of measuring turbidity based on a multi-wavelength spectral sensor is proposed by using SFH4737 broad-band infrared LED,a multi-wavelength spectral sensor and independently developed data processing software....A method of measuring turbidity based on a multi-wavelength spectral sensor is proposed by using SFH4737 broad-band infrared LED,a multi-wavelength spectral sensor and independently developed data processing software.Combining multiple wavelength data from the sensor,the unitary and multivariate fitting models were constructed to investigate the relationship among light intensity information,absorbance and turbidity,respectively.The turbidity of the actual water bodies was measured separately by using proposed method and a commercially visible spectrophotometer.The independent-samples T test(p>0.05)showed that there was no significant difference between the method in this paper and the standard assay method.The method is simple and inexpensive,and can be applied to the rapid detection of water turbidity,providing a new way of industrial online measurement.展开更多
A seed laser oscillating at different frequencies is proved to have the potential to mitigate the stimulated Brillouin scattering(SBS) effect in a fiber amplifier,which may increase the emission power of a coherent ...A seed laser oscillating at different frequencies is proved to have the potential to mitigate the stimulated Brillouin scattering(SBS) effect in a fiber amplifier,which may increase the emission power of a coherent beam combination(CBC) system greatly.In this study,a basic mathematical model describing the multi-wavelength CBC is proposed on the fundamentals of CBC.A useful method for estimating the combination effect and analysing the feasibility and the validity of the multi-wavelength coherent combination is provided.In the numerical analysis,accordant results with four-wavelength four-channel CBC experiments are obtained.Through calculations of some examples with certain spectra,the unanticipated excellent combination effect with a few frequencies involved is explained,and the dependence of the combination effect on the variance of the amplifier chain length and the channel number is clarified.展开更多
This paper proposes CMOS LC-tank divide-by-3 injection locked frequency dividers(ILFDs)fabricated in 0.18μn and 90nm CMOS process and describes the circuit design,operation principle and measurement results of the IL...This paper proposes CMOS LC-tank divide-by-3 injection locked frequency dividers(ILFDs)fabricated in 0.18μn and 90nm CMOS process and describes the circuit design,operation principle and measurement results of the ILFDs.The ILFDs use two injection series-MOSFETs across the LC resonator and a differential injection signal is applied to the gates of injection MOSFETs.The direct-injection divide-by-3 ILFDs are potential for radio-frequency application and can have wide locking range.展开更多
In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extend...In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extended by using differential injection topology. Besides, varactors are used in RLC resonant tank for extending the frequency tuning range. The post simulation results show that a wide locking-range of 9.5 GHz (30.7%) is achieved. When the VCO output frequency varies from 26.85 GHz to 34.42 GHz, the proposed ILFD can achieve divide-by-two correctly. Designed in 0.13 μm CMOS technology, the ILFD occupies a core area of 0.76 mm2 while drawing 7 mA of current from 2.5 V power supply.展开更多
Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of...Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of the multi-wavelength soliton state in a negative dispersion passively mode-locked fiber laser are realized.The generation of the multi-wavelength soliton state undergoes the process of noise,oscillation,and stable mode-locking,and the splitting and annihilation of solitons with different group velocities directly impact the generation and disappearance of three wavelengths.Positive and negative dispersion lead to different group velocities of solitons.The presence and displacement of solitons with different group velocities cause soliton collisions,which lead to soliton explosions.A soliton experiences relative phase oscillation,chaos,and oscillation,as well as convergence and separation before and after an explosion.With an increase in parameters related to pump power,single-soliton oscillation,multi-wavelength solitons,and chaos are found in experiments and simulations,proving the relevance and reliability between simulation and experimental results.This work promotes the dynamical study of multi-soliton collisions in nonlinear science and the development of chaos theory in multi-comb lasers.展开更多
A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The...A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The technical process of this method is as simple as that of standard holographic exposure.展开更多
CMOS analog and mixed-signal phase-locked loops(PLL)are widely used in varies of the system-on-chips(SoC)as the clock generator or frequency synthesizer.This paper presents an overview of the AMS-PLL,including:1)a bri...CMOS analog and mixed-signal phase-locked loops(PLL)are widely used in varies of the system-on-chips(SoC)as the clock generator or frequency synthesizer.This paper presents an overview of the AMS-PLL,including:1)a brief introduction of the basics of the charge-pump based PLL,which is the most widely used AMS-PLL architecture due to its simplicity and robustness;2)a summary of the design issues of the basic CPPLL architecture;3)a systematic introduction of the techniques for the performance enhancement of the CPPLL;4)a brief overview of ultra-low-jitter AMS-PLL architectures which can achieve lower jitter(<100 fs)with lower power consumption compared with the CPPLL,including the injection-locked PLL(ILPLL),subsampling(SSPLL)and sampling PLL(SPLL);5)a discussion about the consideration of the AMS-PLL architecture selection,which could help designers meet their performance requirements.展开更多
The effects of the variations in fiber length,fiber mirror reflectance on efficiency and output power are experimentally investigated for erbium-doped double pass backward superfluorescent fiber sources (SFSs).The inf...The effects of the variations in fiber length,fiber mirror reflectance on efficiency and output power are experimentally investigated for erbium-doped double pass backward superfluorescent fiber sources (SFSs).The influence of fiber length on mean wavelength stability (MWS) has also been demonstrated.By incorporating a short section of un-pumped erbium-doped fiber (EDF) at the output port,the pump power dependent on MWS becomes independent of pumped EDF length.This is a novel phenomenon that hasn’t been reported up to now,and should be helpful to SFS fabrication and theory analysis.By using a fiber Michelson interferometer as spectrum slicing component,a multi-wavelength fiber source (MWFS) with ~20 channels (from 1 542 nm to 1 559 nm) is got.The MWFS has a channel spacing of ~0.8 nm which satisfies ITU-standard.The intensity fluctuation among channels is less than 0.5 dB,and the extinction ratio of all channels is above 14 dB.This kind of MWFS should be useful to wavelength division multiplexing systems.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62205280)the Graduate Innovation Foundation of Yantai University(Grant No.GGIFYTU2348).
文摘Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values.
基金supported by National Key R&D Program of China(grant no.2022YFC2404201)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(grant no.YSBR067).
文摘Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328902)the National Natural Science Foundation of China(Grant No.61501311)
文摘A microwave power-combining system composed of two Panasonic 2M244-M1 magnetrons based on master–slave injection-locking is demonstrated in this paper. The principle of master–slave injection-locking and the locking condition are theoretical analyzed. Experimental results are consistent with the theoretical analysis and the experimental combined efficiency is higher than 96%. Compared with the external-injection-locked system, the power-combining based on the master–slave injection-locking magnetron is superior by taking out the external solid-state driver and the real-time phase control system. Thus, this power-combining system has great potential for obtaining a high efficiency, high stability, low cost, and high power microwave source.
文摘In general, the dependence of the logarithm of the emissivity upon wavelength is usually used in the treatment of data measured by multi-wavelength pyrometer. In this paper, the suitability of this expression for different materials has been examined. Further more, an effective method for automatically searching the mathematical model between emissivity and wavelength has been procsed. The calculated results show that the accuracy is improved by using this data treatment method.
文摘Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.
基金supported in part by NSERC. HCL thanks the support by the National Ma jor Basic Research Pro jects (2011CB925603)Shanghai Municipal Ma jor Basic Research Pro ject (09DJ1400102)
文摘We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched In Ga As grown on InP. Under a 1.55 μm multimode In GaAs/In GaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774301)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11804292)
文摘Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time.Multi-wavelength Raman lasers at 1168.4,1176,1178.7,and 1201.6 nm are achieved by the first Stokes shift of the multi-wavelength fundamental lasers at 1064,1066.7,1073.6,1084,and 1085.6 nm with two Raman shifts of 890 and 816 cm^-1.A maximum Raman output power of 2.56 W is achieved through the use of a 20-mm-long composite crystal,with a corresponding optical conversion efficiency of 9.8%.The polarization directions of different fundamental and Raman lasers are investigated and found to be orthogonalπandσpolarizations.These orthogonally polarized multi-wavelength lasers with small wavelength separation pave the way to the development of a potential laser source for application in spectral analysis,laser radar and THz generation.
基金the Natural Science Foundation of Anhui Province (No. 99045332)
文摘This investigation developed a new method for determining metal complex's property containing the stepwise real absorptivity(epsilon) and stability constant (K-m). The correction equation of the multi-wavelength spectral absorption was established for the simultaneous determination of various complexes to give high accuracy for trace analysis. This method was more acceptable in theory and simpler in operation than the classical methods.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328901)the National Natural Science Foundation of China(Grant No.11305177)
文摘Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect circulator on the injection ratio. Besides, the locking range of the injection-locked magnetron with the mismatched circulator is deduced by functional operation. In addition, the phase differential equation and the locked bandwidth of the injection-locked system with a mismatched circulator are compared with those of the small injection-ratio case with a perfect circulator. The in- fluence of the circulator reflection coefficient on the injection-locked magnetron is also analyzed by numerical calculation. Theoretical analysis shows that the decrement of the locked bandwidth is less than 1% and decrement of the stable phase difference is less than 1.2% when the reflection coefficient is less than 0.1.
基金National Basic Research Program of China(973 Program,No. 2003CB716207)National Natural Science Foundation of China(No.50775091)
文摘A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving the ambiguity problem, a more reliable result is achieved by using weighted average of measurement results from three different wavelengths, where the weight is dependent upon spacing. Fringe-bunching correction algorithm (FBC) and spot-tilling technique are adopted to suppress calibration and random errors. Moreover, incident bandwidth correction (IBC) method is introduced to compensate the error caused by low monochromaticity of incident light. Based on dynamic flying height tester (DFHT Ⅱ), with the redesigned of photo-electric conversion and signal acquirement module, an instrument has been developed. And comparing the experimental data from the instrument with those from a KLA-FHT D6, the discrepancy is less than 5%. It indicates that the instrument is suitable to perform ultra-low flying height measurement and satisfies the reauirement of magnetic heads manufacturing.
文摘An injection-Locked divider(ILD)can provide good synchronization at lower inputsignal to noise ratio,which is its advantage over other types of divider.The general expressionof phase equation and equivalent model are presented for the ILD with an input additive noise.In the absence of noise the performance of the phase-modulated signal through the ILD andsynchronous ranges of the ILD are given.The effects of the additive noise on the ILD arediscuued.The injection-locked amplifier(ILA)is only a particular case in which n=1,thereforethe given results arc applicable to the ILA.
基金National Natural Science Foundation of China(No.71801108)Natural Science Fund for Colleges and Universities of Anhui Province(No.KJ2017ZD32)。
文摘A method of measuring turbidity based on a multi-wavelength spectral sensor is proposed by using SFH4737 broad-band infrared LED,a multi-wavelength spectral sensor and independently developed data processing software.Combining multiple wavelength data from the sensor,the unitary and multivariate fitting models were constructed to investigate the relationship among light intensity information,absorbance and turbidity,respectively.The turbidity of the actual water bodies was measured separately by using proposed method and a commercially visible spectrophotometer.The independent-samples T test(p>0.05)showed that there was no significant difference between the method in this paper and the standard assay method.The method is simple and inexpensive,and can be applied to the rapid detection of water turbidity,providing a new way of industrial online measurement.
基金Project supported by the Innovation Foundation for Postgraduates in the National University of Defense Technology,China(Grant No. S090701)
文摘A seed laser oscillating at different frequencies is proved to have the potential to mitigate the stimulated Brillouin scattering(SBS) effect in a fiber amplifier,which may increase the emission power of a coherent beam combination(CBC) system greatly.In this study,a basic mathematical model describing the multi-wavelength CBC is proposed on the fundamentals of CBC.A useful method for estimating the combination effect and analysing the feasibility and the validity of the multi-wavelength coherent combination is provided.In the numerical analysis,accordant results with four-wavelength four-channel CBC experiments are obtained.Through calculations of some examples with certain spectra,the unanticipated excellent combination effect with a few frequencies involved is explained,and the dependence of the combination effect on the variance of the amplifier chain length and the channel number is clarified.
文摘This paper proposes CMOS LC-tank divide-by-3 injection locked frequency dividers(ILFDs)fabricated in 0.18μn and 90nm CMOS process and describes the circuit design,operation principle and measurement results of the ILFDs.The ILFDs use two injection series-MOSFETs across the LC resonator and a differential injection signal is applied to the gates of injection MOSFETs.The direct-injection divide-by-3 ILFDs are potential for radio-frequency application and can have wide locking range.
文摘In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extended by using differential injection topology. Besides, varactors are used in RLC resonant tank for extending the frequency tuning range. The post simulation results show that a wide locking-range of 9.5 GHz (30.7%) is achieved. When the VCO output frequency varies from 26.85 GHz to 34.42 GHz, the proposed ILFD can achieve divide-by-two correctly. Designed in 0.13 μm CMOS technology, the ILFD occupies a core area of 0.76 mm2 while drawing 7 mA of current from 2.5 V power supply.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261131495,12075210,and 12275240)the Scientific Research and Development Fund of Zhejiang A&F University(Grant No.2021FR0009)。
文摘Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of the multi-wavelength soliton state in a negative dispersion passively mode-locked fiber laser are realized.The generation of the multi-wavelength soliton state undergoes the process of noise,oscillation,and stable mode-locking,and the splitting and annihilation of solitons with different group velocities directly impact the generation and disappearance of three wavelengths.Positive and negative dispersion lead to different group velocities of solitons.The presence and displacement of solitons with different group velocities cause soliton collisions,which lead to soliton explosions.A soliton experiences relative phase oscillation,chaos,and oscillation,as well as convergence and separation before and after an explosion.With an increase in parameters related to pump power,single-soliton oscillation,multi-wavelength solitons,and chaos are found in experiments and simulations,proving the relevance and reliability between simulation and experimental results.This work promotes the dynamical study of multi-soliton collisions in nonlinear science and the development of chaos theory in multi-comb lasers.
文摘A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The technical process of this method is as simple as that of standard holographic exposure.
基金supported by the Pioneer Hundred Talents Program,Chinese Academy of Sciences.
文摘CMOS analog and mixed-signal phase-locked loops(PLL)are widely used in varies of the system-on-chips(SoC)as the clock generator or frequency synthesizer.This paper presents an overview of the AMS-PLL,including:1)a brief introduction of the basics of the charge-pump based PLL,which is the most widely used AMS-PLL architecture due to its simplicity and robustness;2)a summary of the design issues of the basic CPPLL architecture;3)a systematic introduction of the techniques for the performance enhancement of the CPPLL;4)a brief overview of ultra-low-jitter AMS-PLL architectures which can achieve lower jitter(<100 fs)with lower power consumption compared with the CPPLL,including the injection-locked PLL(ILPLL),subsampling(SSPLL)and sampling PLL(SPLL);5)a discussion about the consideration of the AMS-PLL architecture selection,which could help designers meet their performance requirements.
文摘The effects of the variations in fiber length,fiber mirror reflectance on efficiency and output power are experimentally investigated for erbium-doped double pass backward superfluorescent fiber sources (SFSs).The influence of fiber length on mean wavelength stability (MWS) has also been demonstrated.By incorporating a short section of un-pumped erbium-doped fiber (EDF) at the output port,the pump power dependent on MWS becomes independent of pumped EDF length.This is a novel phenomenon that hasn’t been reported up to now,and should be helpful to SFS fabrication and theory analysis.By using a fiber Michelson interferometer as spectrum slicing component,a multi-wavelength fiber source (MWFS) with ~20 channels (from 1 542 nm to 1 559 nm) is got.The MWFS has a channel spacing of ~0.8 nm which satisfies ITU-standard.The intensity fluctuation among channels is less than 0.5 dB,and the extinction ratio of all channels is above 14 dB.This kind of MWFS should be useful to wavelength division multiplexing systems.