We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabri...We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched In Ga As grown on InP. Under a 1.55 μm multimode In GaAs/In GaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.展开更多
As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perov...As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.展开更多
Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region...Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.展开更多
Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the...Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.展开更多
The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature ...The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.展开更多
Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bul...Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.展开更多
Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold...Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.展开更多
In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lase...In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.展开更多
Direct epitaxial growthⅢ–Ⅴquantum dot(QD)structures on CMOS-compatible silicon substrates is considered as one of the most promising approaches to achieve low-cost and high-yield Si-based lasers for silicon photoni...Direct epitaxial growthⅢ–Ⅴquantum dot(QD)structures on CMOS-compatible silicon substrates is considered as one of the most promising approaches to achieve low-cost and high-yield Si-based lasers for silicon photonic integration.However,epitaxial growth ofⅢ–Ⅴmaterials on Si encounters the following three major challenges:high density of threading dislocations,antiphase boundaries and thermal cracks,which significantly degrade the crystal quality and potential device performance.In this review,we will focus on some recent results related to InAs/GaAs quantum dot lasers on Si(001)substrates byⅢ–Ⅴ/Ⅳhybrid epitaxial growth via(111)-faceted Si hollow structures.Moreover,by using the step-graded epitaxial growth process the emission wavelength of InAs QDs can be extended from O-band to C/L-band.High-performance InAs/GaAs QD microdisk lasers with sub-milliwatts threshold on Si(001)substrates are fabricated and characterized.The above results pave a promising path towards the on-chip lasers for optical interconnect applications.展开更多
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a be...A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under a-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.展开更多
Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically stud...Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically studied.Within the range of period-one(P1)dynamics caused by the optical injection,the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated.It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters,and the microwave intensity can be enhanced by changing the injection strength.Moreover,considering that the generated microwave has a wide linewidth,an optical feedback loop is further employed to compress the linewidth,and the effect of feedback parameters on the linewidth is investigated.It is found that with the increase of feedback strength or delay time,the linewidth is evidently decreased due to the locking effect.However,for the relatively large feedback strength or delay time,the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics.Besides,through optimizing the feedback parameters,the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.展开更多
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of...A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm^2only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current densitycan be reduced remarkably compared with the free-running QD gain device.展开更多
Growing semiconductor laser sources on silicon is a crucial but challenging technology for developing photonic integrated circuits(PICs).InAs/GaAs quantum dot(Qdot)lasers have successfully circumvented the mismatch pr...Growing semiconductor laser sources on silicon is a crucial but challenging technology for developing photonic integrated circuits(PICs).InAs/GaAs quantum dot(Qdot)lasers have successfully circumvented the mismatch problem betweenⅢ–Ⅴmaterials and Ge or Si,and have demonstrated efficient laser emission.In this paper,we review dynamical characteristics of Qdot lasers epitaxially grown on Ge or Si,in comparison with those of Qdot lasers on native GaAs substrate.We discuss properties of linewidth broadening factor,laser noise and its sensitivity to optical feedback,intensity modulation,as well as mode locking operation.The investigation of these dynamical characteristics is beneficial for guiding the design of PICs in optical communications and optical computations.展开更多
A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss an...A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ.展开更多
The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photol...The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.展开更多
The optical performance of a grating-coupled external Continuous tuning from 1391 nm to 1468 nm is realized at cavity laser based on InAs/InP quantum dots is investigated. an injection current of 1900 mA. With the inj...The optical performance of a grating-coupled external Continuous tuning from 1391 nm to 1468 nm is realized at cavity laser based on InAs/InP quantum dots is investigated. an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.展开更多
A wide wavelength tuning range swept external-cavity laser using an In As/Ga As quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Li...A wide wavelength tuning range swept external-cavity laser using an In As/Ga As quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-m W peak output power and up to 33-k Hz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.展开更多
A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity le...A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest -3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation.展开更多
A new Quantum Dots(Qdots) nanocrystal composed of semiconductor core and zinc sulfide shell, and its feasibility as labels in immunofluorescence analysis for the imaging of tumor biomarkers by laser scanning confoca...A new Quantum Dots(Qdots) nanocrystal composed of semiconductor core and zinc sulfide shell, and its feasibility as labels in immunofluorescence analysis for the imaging of tumor biomarkers by laser scanning confocal microscope(LSCM) was investigated. Qdots taged by mercaptoacetic acid were conjugated with second antibody, then imaging differences of Heat Shock Proteins 70(HSP70) in renal carcinoma tissure sections with immunofluorescence analysis method using Qdots bioconjugates and conventional organic dye FITC were observed by LSCM to assess the brightness and opticalstability of Qdots. The experimental results showed Qdots bioconjugates achieved the better results in demonstrating HSP70 with more brighter color and more clear picture than FITC labels. Moreover, the label signals of Qdots did not fade clearly after continued exposure to a 488 nm laser for 1 h. The Qdots bioconjugates have good feasibility in immunofluorescence analysis for the bioimaging by LSCM.展开更多
基金supported in part by NSERC. HCL thanks the support by the National Ma jor Basic Research Pro jects (2011CB925603)Shanghai Municipal Ma jor Basic Research Pro ject (09DJ1400102)
文摘We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched In Ga As grown on InP. Under a 1.55 μm multimode In GaAs/In GaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.
基金supported by the National Natural Science Foundation of China(Grant No.52102266,12204167)the China Postdoctoral Science Foundation(2020M680861)+4 种基金the support from the Department of Science and Technology-Science and Engineering Research Board(DST-SERB),Government of India(project no.SRG/2020/000258)CSIR-Indian Institute of Chemical Technology,Hyderabadsupported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A5A1032539,2022R1C1C1008282)Industrial Strategic Technology Development Program-Alchemist Project(1415180859,Chiral perovskite LED smart contact lens based hyper vision metaverse)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)Korea Evaluation Institute of Industrial Technology(KEIT,Korea).
文摘As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.
基金This work was supported by the National Natural Science Foundation of China(Nos.U21A20493,62104204,and 62234011)the National Key Research and Development Program of China(No.2017YFE0131500)the President’s Foundation of Xiamen University(No.20720220108).
文摘Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.
基金the Science and Technology Program of Guangzhou(Grant No.202103030001)the KeyArea Research and Development Program of Guangdong Province(Grant No.2018B030329001)+8 种基金the National Natural Science Foundation of China(Grant Nos.62035017,61505196,and 62204238)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the Major Program of the National Natural Science Foundation of China(Grant Nos.61790580 and 61790581)the Chinese Academy of Sciences and Changchun City Science and Technology Innovation Cooperation Project(Grant No.21SH06)Jincheng Key Research and Development Project(Grant No.20210209)the Key R&D Program of Shanxi Province(Grant No.202102030201004)the R&D Program of Guangdong Province(Grant Nos.2018B030329001 and2020B0303020001)Shenzhen Technology Research Project(Grant No.JSGG20201102145200001)the National Key Technologies R&D Program of China(Grant No.2018YFA0306100)。
文摘Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.
文摘The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.
文摘Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.
文摘Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.
基金financial support from the UK EPSRC under grant No. EP/P006973/1the EPSRC National Epitaxy Facility European project H2020-ICT-PICTURE (780930)+2 种基金the Royal Academy of Engineering (RF201617/16/28)Investissments d’avenir (IRT Nanoelec: ANR-10-IRT-05 and Need for IoT: ANR-15-IDEX-02)the Chinese Scholarship Council for funding
文摘In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.
基金financial support was provided by the National Natural Science Foundation of China (Nos. 61635011, 11574356, 11434010, 61804177 and 11804382)National Key Research and Development Program of China (Nos. 2016YFA0300600 and 2016YFA0301700)+1 种基金Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC009)Ting Wang was supported by the Youth Innovation Promotion Association of CAS (No. 2018011)
文摘Direct epitaxial growthⅢ–Ⅴquantum dot(QD)structures on CMOS-compatible silicon substrates is considered as one of the most promising approaches to achieve low-cost and high-yield Si-based lasers for silicon photonic integration.However,epitaxial growth ofⅢ–Ⅴmaterials on Si encounters the following three major challenges:high density of threading dislocations,antiphase boundaries and thermal cracks,which significantly degrade the crystal quality and potential device performance.In this review,we will focus on some recent results related to InAs/GaAs quantum dot lasers on Si(001)substrates byⅢ–Ⅴ/Ⅳhybrid epitaxial growth via(111)-faceted Si hollow structures.Moreover,by using the step-graded epitaxial growth process the emission wavelength of InAs QDs can be extended from O-band to C/L-band.High-performance InAs/GaAs QD microdisk lasers with sub-milliwatts threshold on Si(001)substrates are fabricated and characterized.The above results pave a promising path towards the on-chip lasers for optical interconnect applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金Project supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086, 60776037, and 10775106)
文摘A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under a-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.
基金the National Natural Science Foundation of China(Grant Nos.61775184 and 61875167).
文摘Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically studied.Within the range of period-one(P1)dynamics caused by the optical injection,the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated.It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters,and the microwave intensity can be enhanced by changing the injection strength.Moreover,considering that the generated microwave has a wide linewidth,an optical feedback loop is further employed to compress the linewidth,and the effect of feedback parameters on the linewidth is investigated.It is found that with the increase of feedback strength or delay time,the linewidth is evidently decreased due to the locking effect.However,for the relatively large feedback strength or delay time,the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics.Besides,through optimizing the feedback parameters,the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086 and 60776037)
文摘A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm^2only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current densitycan be reduced remarkably compared with the free-running QD gain device.
基金supported by National Natural Science Foundation of China (No. 61804095)by Shanghai Pujiang Program (No. 17PJ1406500)
文摘Growing semiconductor laser sources on silicon is a crucial but challenging technology for developing photonic integrated circuits(PICs).InAs/GaAs quantum dot(Qdot)lasers have successfully circumvented the mismatch problem betweenⅢ–Ⅴmaterials and Ge or Si,and have demonstrated efficient laser emission.In this paper,we review dynamical characteristics of Qdot lasers epitaxially grown on Ge or Si,in comparison with those of Qdot lasers on native GaAs substrate.We discuss properties of linewidth broadening factor,laser noise and its sensitivity to optical feedback,intensity modulation,as well as mode locking operation.The investigation of these dynamical characteristics is beneficial for guiding the design of PICs in optical communications and optical computations.
基金Project supported by the National Natural Science Foundation of China(Grant No.61274072)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ.
基金Project supported by the Natural Science Foundation of Beijing,China (Grant No.4112060)the Special Foundation for National Key Scientific Instrument,China (Grant No.2012YQ140005)+5 种基金the Open Fund of High Power Laser Laboratory,China Academy of Engineering Physics (Grant No.2013HEL03)the National Natural Science Foundation of China (Grant No.61274125)the National Basic Research Program,China (Grant No.2010CB327601)the State Key Laboratory on Integrated Optoelectronics Open Project,China (Grant No.2011KFB002)financially supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programmethe financial support through a Royal Academy of Engineering/EPSRC Research Fellowship
文摘The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61274072, 60976057, 61176047, and 60876086)
文摘The optical performance of a grating-coupled external Continuous tuning from 1391 nm to 1468 nm is realized at cavity laser based on InAs/InP quantum dots is investigated. an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.
基金Project supported by the National Natural Science Foundation of China(Grant No.61274072)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘A wide wavelength tuning range swept external-cavity laser using an In As/Ga As quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-m W peak output power and up to 33-k Hz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274072,60976057,and 60876086)
文摘A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest -3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation.
基金Funded by the National Natural Science Foundation of China (No.303711325)
文摘A new Quantum Dots(Qdots) nanocrystal composed of semiconductor core and zinc sulfide shell, and its feasibility as labels in immunofluorescence analysis for the imaging of tumor biomarkers by laser scanning confocal microscope(LSCM) was investigated. Qdots taged by mercaptoacetic acid were conjugated with second antibody, then imaging differences of Heat Shock Proteins 70(HSP70) in renal carcinoma tissure sections with immunofluorescence analysis method using Qdots bioconjugates and conventional organic dye FITC were observed by LSCM to assess the brightness and opticalstability of Qdots. The experimental results showed Qdots bioconjugates achieved the better results in demonstrating HSP70 with more brighter color and more clear picture than FITC labels. Moreover, the label signals of Qdots did not fade clearly after continued exposure to a 488 nm laser for 1 h. The Qdots bioconjugates have good feasibility in immunofluorescence analysis for the bioimaging by LSCM.