Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate la...Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.展开更多
In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical qualit...In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.展开更多
As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model...As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.展开更多
The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) io...The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.展开更多
The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtua...The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtual/augmented reality(VR/AR). To accommodate massive connections and astonish mobile traffic, an efficient 5G transport network is required. Optical transport network has been demonstrated to play an important role for carrying 5G radio signals. This paper focuses on the future challenges, recent studies and potential solutions for the 5G flexible optical transport networks with the performances on large-capacity, low-latency and high-efficiency. In addition, we discuss the technology development trends of the 5G transport networks in terms of the optical device, optical transport system, optical switching, and optical networking. Finally, we conclude the paper with the improvement of network intelligence enabled by these technologies to deterministic content delivery over 5G optical transport networks.展开更多
AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segment...AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.展开更多
Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO n...Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.展开更多
By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional(1D) parity-time-symmetric(PT-symmetric) two-segment-connected triangular opti...By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional(1D) parity-time-symmetric(PT-symmetric) two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios respectively. It is found that the number and the corresponding frequencies of the extremum spontaneous PT-symmetric breaking points are dependent on the waveguide length ratio. Near the extremum breaking points, ultrastrong extraordinary transmissions are created and the maximal can arrive at, respectively, 2.4079 × 10^14 and 4.3555 × 10^13 in both kinds of networks. However, bidirectional invisibility can only be produced by the networks with broken integer waveguide length ratio, whose mechanism is explained in detail from the perspective of photonic band structure. The findings of this work can be useful optical characteristic control in the fabrication of PT-symmetric optical waveguide networks, which possesses great potential in designing optical amplifiers,optical energy saver devices, and special optical filters.展开更多
Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for ...Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.展开更多
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced e...Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced endoscopy are widely available,optical diagnosis has not been incorporated into routine clinical practice,mainly due to significant inter-operator variability.In recent years,there has been a growing number of studies demonstrating the potential of convolutional neural networks(CNN)to enhance optical diagnosis of polyps.Data suggest that the use of CNNs might mitigate the inter-operator variability amongst endoscopists,potentially enabling a“resect and discard”or“leave in”strategy to be adopted in real-time.This would have significant financial benefits for healthcare systems,avoid unnecessary polypectomies of non-neoplastic polyps and improve the efficiency of colonoscopy.Here,we review advances in CNN for the optical diagnosis of colorectal polyps,current limitations and future directions.展开更多
Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-...Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d(33)) Of 10(-7)similar to 10(-8) esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120 degreesC) indicated that these films exhibit high d(33) stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.展开更多
A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy...A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
As internet services newly emerge with diversity and complexity, great challenges and demands are presented to the Open Flow controlled software defined optical networks(SDON) to achieve better match between services ...As internet services newly emerge with diversity and complexity, great challenges and demands are presented to the Open Flow controlled software defined optical networks(SDON) to achieve better match between services and SDON. With this aim, this paper proposes a naive Echo-State-Network(Naive-ESN) based services awareness algorithm of the software defined optical network, where the naive ESN model adopts the ring topology structure and generates the probability output result to determine the Qo S policy of SDON. Moreover, the Naive-ESN engine is also designed in controller node of SDON to perform services awareness by obtaining service traffic features from data plan, together with some necessary extension of the Open Flow protocol. Test results show that the proposed approach is able to improved services-oriented supporting ability of SDON.展开更多
Optical parameters(properties)of tissue-mimicking phantoms are determined through nonin-vasive optical imaging.Objective of this study is to decompose obtained difuse reflectance into these optical properties such as ...Optical parameters(properties)of tissue-mimicking phantoms are determined through nonin-vasive optical imaging.Objective of this study is to decompose obtained difuse reflectance into these optical properties such as absorption and scattering coefficients.To do so,transmission spectroscopy is firstly used to measure the coefficients via an experimental setup.Next,the optical properties of each characterized phantom are input for Monte Carlo(MC)simulations to get diffuse reflectance.Also,a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5°angle to the phantoms.For the illumination of light,a laser light source at 633 nm wavelength is preferred,because optical properties of different components in a biological tissue on that wavelength are nonoverlapped.During in vitro measurements,we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion(CILE)and evans blue(EB)dye into a distilled water.Finally,all obtained difuse reflectance values are used to estimate the optical coefficients by artificial neural networks(ANNs)in inverse modeling.For a biological tissue it is found that the simulated and measured values in our results are in good agreement.展开更多
Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is...Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.展开更多
Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying ...Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying transport network supporting theseservices. This paper discusses latency limitations in PON and recent progress in PONstandardization to improve latency. Experimental results of a low latency PON system arepresented as a proof of concept.展开更多
Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmiss...Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.展开更多
The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features ...The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.展开更多
A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). ...A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE.展开更多
文摘Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.
基金supported in part by the Science and Technology Project of Hebei Education Department,Grant ZD2021088in part by the S&T Major Project of the Science and Technology Ministry of China,Grant 2017YFE0135700。
文摘In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.
基金Supported by the National Key Research and Development Program of China(No.2021YFB2401204)。
文摘As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.
基金National Natural Science Foundation of China(11974063)Graduate research innovation project,School of Optoelectronic Engineering,Chongqing University(GDYKC2023002)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-010)The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project no.(IFKSUOR3-073-9).
文摘The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.
基金supported by the National Nature Science Foundation of China Projects(No.61871051,61771073)the Nature Science Foundation of Beijing project(No.4192039)
文摘The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtual/augmented reality(VR/AR). To accommodate massive connections and astonish mobile traffic, an efficient 5G transport network is required. Optical transport network has been demonstrated to play an important role for carrying 5G radio signals. This paper focuses on the future challenges, recent studies and potential solutions for the 5G flexible optical transport networks with the performances on large-capacity, low-latency and high-efficiency. In addition, we discuss the technology development trends of the 5G transport networks in terms of the optical device, optical transport system, optical switching, and optical networking. Finally, we conclude the paper with the improvement of network intelligence enabled by these technologies to deterministic content delivery over 5G optical transport networks.
基金Supported by National Science Foundation of China(No.81800878)Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2017QN24)+1 种基金Key Technological Research Projects of Songjiang District(No.18sjkjgg24)Bethune Langmu Ophthalmological Research Fund for Young and Middle-aged People(No.BJ-LM2018002J)
文摘AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.
基金This work is supported in part by the US National Science Foundation under Grants CNS-1320664, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Aubur, AL, USA.
文摘Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674107,61475049,11775083,61875057,61774062,and 61771205)Special Funds for the Cultivation of Guangdong College Students’ Scientific and Techonlogical Innovation,China(Grant No.pdjhb0139)
文摘By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional(1D) parity-time-symmetric(PT-symmetric) two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios respectively. It is found that the number and the corresponding frequencies of the extremum spontaneous PT-symmetric breaking points are dependent on the waveguide length ratio. Near the extremum breaking points, ultrastrong extraordinary transmissions are created and the maximal can arrive at, respectively, 2.4079 × 10^14 and 4.3555 × 10^13 in both kinds of networks. However, bidirectional invisibility can only be produced by the networks with broken integer waveguide length ratio, whose mechanism is explained in detail from the perspective of photonic band structure. The findings of this work can be useful optical characteristic control in the fabrication of PT-symmetric optical waveguide networks, which possesses great potential in designing optical amplifiers,optical energy saver devices, and special optical filters.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.Surrey-Ref-9953
文摘Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.
文摘Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced endoscopy are widely available,optical diagnosis has not been incorporated into routine clinical practice,mainly due to significant inter-operator variability.In recent years,there has been a growing number of studies demonstrating the potential of convolutional neural networks(CNN)to enhance optical diagnosis of polyps.Data suggest that the use of CNNs might mitigate the inter-operator variability amongst endoscopists,potentially enabling a“resect and discard”or“leave in”strategy to be adopted in real-time.This would have significant financial benefits for healthcare systems,avoid unnecessary polypectomies of non-neoplastic polyps and improve the efficiency of colonoscopy.Here,we review advances in CNN for the optical diagnosis of colorectal polyps,current limitations and future directions.
文摘Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d(33)) Of 10(-7)similar to 10(-8) esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120 degreesC) indicated that these films exhibit high d(33) stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.
基金the Science & Technology Foundation of Huawei Ltd. (No.YJCB2005040SW)the Creative Foundation of Xidian University (No.05030).
文摘A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
基金supported by the Science and Technology Project of State Grid Corporation of China:“Research on the Power-Grid Services Oriented “IP+Optical” Coordination Choreography Technology”.
文摘As internet services newly emerge with diversity and complexity, great challenges and demands are presented to the Open Flow controlled software defined optical networks(SDON) to achieve better match between services and SDON. With this aim, this paper proposes a naive Echo-State-Network(Naive-ESN) based services awareness algorithm of the software defined optical network, where the naive ESN model adopts the ring topology structure and generates the probability output result to determine the Qo S policy of SDON. Moreover, the Naive-ESN engine is also designed in controller node of SDON to perform services awareness by obtaining service traffic features from data plan, together with some necessary extension of the Open Flow protocol. Test results show that the proposed approach is able to improved services-oriented supporting ability of SDON.
基金the Scientific and Technological Research Council of Turkey(TUBI-TAK),under Grant No.113E771.
文摘Optical parameters(properties)of tissue-mimicking phantoms are determined through nonin-vasive optical imaging.Objective of this study is to decompose obtained difuse reflectance into these optical properties such as absorption and scattering coefficients.To do so,transmission spectroscopy is firstly used to measure the coefficients via an experimental setup.Next,the optical properties of each characterized phantom are input for Monte Carlo(MC)simulations to get diffuse reflectance.Also,a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5°angle to the phantoms.For the illumination of light,a laser light source at 633 nm wavelength is preferred,because optical properties of different components in a biological tissue on that wavelength are nonoverlapped.During in vitro measurements,we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion(CILE)and evans blue(EB)dye into a distilled water.Finally,all obtained difuse reflectance values are used to estimate the optical coefficients by artificial neural networks(ANNs)in inverse modeling.For a biological tissue it is found that the simulated and measured values in our results are in good agreement.
基金performed in the Projects " LIGHTNESS : Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects" (No. 318606) "COSIGN: Combining Optics and SDN In next Generation data centre Networks" (No. 619572) supported by European Commission FP7
文摘Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.
文摘Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying transport network supporting theseservices. This paper discusses latency limitations in PON and recent progress in PONstandardization to improve latency. Experimental results of a low latency PON system arepresented as a proof of concept.
基金supported in part by NSFC project (61571058, 61601052)
文摘Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.
基金supported by National Natural Science Foundation of China(No.61571061)Innovative Research Fund of Beijing University of Posts and Telecommunications (2015RC16)
文摘The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2010CB328204National High Technology Research and Development Program of China (863 program) under Grant No.2009AA01Z255+3 种基金National Natural Science Foundation of China under Grant No. 60932004RFDP Project under Grant No.20090005110013111 Project of China under Grant No.B07005China Fundamental Research Funds for the Central Universities
文摘A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE.