Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electroma...Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials.展开更多
Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ra...Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ratio (SNR) compared to the coherent case. To overcome the gap, an effective differential encoding and decoding scheme for multiband UWB systems is proposed. The proposed scheme employs the parallel concatenation of two recursive differential unitary space-frequency encoders at the transmitter. At the receiver, two component decoders iteratively decode information bits by interchanging soft metric values between each other. To reduce the computation complexity, a decoding algorithm which only uses transition probability to calculate the log likelihood ratios (LLRs) for the decoded bits is given. Simulation results show that the proposed scheme can dramatically outperform the conventional differential and even coherent detection at high SNR with a few iterations.展开更多
This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76,...This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and 5.06 THz, which are consistent with 'fingerprints' of some explosive materials. The retrieved material parameters show that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.展开更多
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith...In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.展开更多
Operation in multiple frequency bands simultaneously is an important enabler for future wireless communication systems. This article presents a new concept for scheduling transmissions in a wireless radio system opera...Operation in multiple frequency bands simultaneously is an important enabler for future wireless communication systems. This article presents a new concept for scheduling transmissions in a wireless radio system operating in multiple frequency bands: the Multiband Scheduler (MBS). The MBS ensures that the operation in multiple bands is transparent to higher network layers. Special attention is paid to achieving low delay and latency when operating the system in the multiband mode. In particular, we propose additions to the ARQ procedures in order to achieve this. Deployment details and assessment results are presented for two multiband deployment scenarios. The first scenario is operation in a spectrum sharing context where multiple bands are used: one dedicated band for basic service and one shared extension band for extended services. In the second scenario we consider multiband operation in a relay environment, where the two bands have different propagation properties and relays provide extra coverage and capacity in the whole cell.展开更多
To improve the data transmission rate and use spectrum flexibly, a new spectrum allocation method for Multiband Impulse Radio UWB (MB-IR-UWB) is proposed in this paper based on the band-limited and orthogonal characte...To improve the data transmission rate and use spectrum flexibly, a new spectrum allocation method for Multiband Impulse Radio UWB (MB-IR-UWB) is proposed in this paper based on the band-limited and orthogonal characteristics of Prolate Spheroidal Wave Function (PSWF). The system model is built and the bit error rate (BER) formula is deprived by binary time hopping pulse position modulation under additive white Gaussian noise. Moreover, the system performance is analyzed via MATLB simulation. The results indicate that MB-IR-UWB system performance of BER is the same with single-band UWB. However, in the proposed scheme the data can be transmitted in multiple parallel bands, which enjoys much higher transmission rate. In addition, PSWF pulse duration affects the BER performance.展开更多
Endoscopic resection(ER) is at present an accepted treatment for superficial gastrointestinal neoplasia. ER provides similar efficacy to surgery; however, it is minimally invasive and less expensive. Endoscopic mucosa...Endoscopic resection(ER) is at present an accepted treatment for superficial gastrointestinal neoplasia. ER provides similar efficacy to surgery; however, it is minimally invasive and less expensive. Endoscopic mucosal resection(EMR) is superior to biopsy for diagnosing advanced dysplasia and can change the diagnostic grade and the management. Several EMR techniques have been described that are alternatively used dependent upon the endoscopist personal experience, the anatomic conditions and the endoscopic appearance of the lesion to be resected. The literature suggests that EMR offers comparable outcomes to surgery for selected indications. EMR techniques using a cap fitted endoscope and EMR using a ligation device [multiband mucosectomy(MBM)] are the most frequently use. MBM technique does not require submucosal injection as with the endoscopic resectioncap technique, multiple resections can be performed with the same snare, pre-looping the endoscopic resection-snare in the ridge of the cap is not necessary, MBM does not require withdrawal of the endoscope between resections and up to six consecutive resections can be performed. This reduces the time and cost required for the procedure, while also reducing patient discomfort. Despite the increasing popularity of MBM, data on the safety and efficacy of this technique in upper gastrointestinal lesions with advanced dysplasia, defined as those lesions that have high-grade dysplasia or early cancer, is limited.展开更多
A 0.18 μm CMOS low noise amplifier(LNA) by utilizing noise-canceling technique was designed and implemented in this paper. Current-reuse and self-bias techniques were used in the first stage to achieve input matching...A 0.18 μm CMOS low noise amplifier(LNA) by utilizing noise-canceling technique was designed and implemented in this paper. Current-reuse and self-bias techniques were used in the first stage to achieve input matching and reduce power consumption. The core size of the proposed CMOS LNA circuit without inductor was only 128 μm 9226 μm. The measured power gain and noise figure of the proposed LNA were 20.6 and 1.9 dB,respectively. The 3-dB bandwidth covers frequency from 0.1 to 1.2 GHz. When the chip was operated at a supply voltage of 1.8 V, it consumed 25.69 mW. The high performance of the proposed LNA makes it suitable for multistandard low-cost receiver front-ends within the above frequency range.展开更多
A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metalli...A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region.展开更多
AIM:To assess the cost savings of reloading the multiband ligator in endoscopic esophageal variceal ligation (EVL) used on the same patient for subsequent sessions. METHODS:This single centre retrospective descriptive...AIM:To assess the cost savings of reloading the multiband ligator in endoscopic esophageal variceal ligation (EVL) used on the same patient for subsequent sessions. METHODS:This single centre retrospective descriptive study analysed patients undergoing variceal ligation at a tertiary care centre between 1st January, 2003 and 30th June, 2006. The multiband ligator was reloaded with six hemorrhoidal bands using hemorrhoidal ligator for the second and subsequent sessions. Analysis of cost saving was done for the number of follow-up sessions for the variceal eradication. RESULTS:A total of 261 patients underwent at least one session of endoscopic esophageal variceal ligation between January 2003 and June 2006. Out of 261, 108 patients (males 67) agreed to follow the eradication program and underwent repeated sessions. A total of 304 sessions was performed with 2.81 sessions per patient on average. Thirty-two patients could not complete the programm. In 76 patients (70%), variceal obliteration was achieved. The ratio of the costs for the session with reloaded ligator versus a session with a new ligator was 1:2.37. Among the patients who completed esophageal varices eradication, cost saving with reloaded ligator was 58%. CONCLUSION:EVL using reloaded multiband ligators for the follow-up sessions on patients undergoing variceal eradication is a cost saving procedure. Reloading the ligator thus is recommended especially for developing countries where most of the patients are not health insured.展开更多
This paper proposes an algorithm that adopts the harmonic regeneration as post-processing to improve the performance of speech enhancement using traditional Short Time Spectral Amplitude(STSA).The proposed algorithm a...This paper proposes an algorithm that adopts the harmonic regeneration as post-processing to improve the performance of speech enhancement using traditional Short Time Spectral Amplitude(STSA).The proposed algorithm aims to alleviate the distortion of the high harmonics of enhanced speech via the traditional STSA,and consequently improves the speech quality.We first detect the pitch,or fundamental frequency,of the enhanced speech via the traditional STSA,and then,divide the whole spectrum into multiple sub-bands which center on each harmonic.After that,a series of specially designed windows centered on each harmonic are applied to all the sub-bands,in order to redistribute the energy in the sub-bands.The results of experiment demonstrate that the method has both theo-retical and practical basis.展开更多
We design an actively tunable polarization-sensitive multiband absorber in the mid-infrared region,which consists of stacked graphene multilayers separated by dielectric layers on a metal mirror.Benefiting from the an...We design an actively tunable polarization-sensitive multiband absorber in the mid-infrared region,which consists of stacked graphene multilayers separated by dielectric layers on a metal mirror.Benefiting from the anisotropic structure,the absorber has dual absorption bands with almost perfect absorption at different wavelengths under the x and y polarizations.Analyzing the electric field amplitude distributions and the surface currents,we find that the absorption peaks under the same polarization are excited in the graphene layers independently.Therefore,more absorption bands can be achieved by increasing the graphene layers.Adjusting the Fermi energy of the graphene layers,the working wavelengths of the polarization-sensitive multiband absorbers can be tuned actively,and thus achieving a wide band regulation range.Besides,the peak number and the peak strength of the multiband absorber can be actively controlled by the polarization angle as well.We also propose a method to design an actively tunable polarization-sensitive multiband absorber,which may have potential applications in mid-infrared devices,such as polarization-sensitive filters and detectors.展开更多
In this paper, we study the dynamic behavior and quasi-energy spectrum of multiband superlattice Bloch electrons in quantum kicked potential. We show analytically and numerically the avoided crossing and band suppress...In this paper, we study the dynamic behavior and quasi-energy spectrum of multiband superlattice Bloch electrons in quantum kicked potential. We show analytically and numerically the avoided crossing and band suppression about the quasi-energy spectrum, the dynamic nonlocalization, and the electron oscillation behavior between two bands.展开更多
A kind of novel muhiband antenna with square-nested fractal is proposed and designed, including printed monopole antenna and dipole antenna, which are nested with a series of similar square elements. The antennas can ...A kind of novel muhiband antenna with square-nested fractal is proposed and designed, including printed monopole antenna and dipole antenna, which are nested with a series of similar square elements. The antennas can synchronously operate in multiple frequencies, covering the four required frequencies, 2.4GHz/ 3.5GHz/5.2GHz/5.8GHz, for WLAN/WiMAX application. The antenna surface currents are simulated by CST MWS, a three-dimension full-wave electromagnetic simulator, and the multiband operating mechanism has been explained from analysis of the simulation results. Then the models of the two proposed antennas fed by coplanar waveguide (monopole antenna) and balanced microstripline (dipole antenna), respectively, have been obtained. Finally, prototypes of the two antennas have been manufactured and measured in anechoic chamber. The results well match the simulation results, which verifies the feasibility of design idea. Moreover, these antennas are miniature and the design idea can be easily applied into other types of nested structure, the features of which make the Proposed antennas have promising application in muhiband fields.展开更多
This study presents an Epsilon Mu near-zero(EMNZ)nanostructured metamaterial absorber(NMMA)for visible regime applications.The resonator and dielectric layers are made of tungsten(W)and quartz(fused),where the working...This study presents an Epsilon Mu near-zero(EMNZ)nanostructured metamaterial absorber(NMMA)for visible regime applications.The resonator and dielectric layers are made of tungsten(W)and quartz(fused),where the working band is expanded by changing the resonator layer’s design.Due to perfect impedance matching with plasmonic resonance characteristics,the proposed NMMA structure is achieved an excellent absorption of 99.99%at 571 THz,99.50%at 488.26 THz,and 99.32%at 598 THz frequencies.The absorption mechanism is demonstrated by the theory of impedance,electric field,and power loss density distributions,respectively.The geometric parameters are explored and analyzed to show the structure’s performance,and a near-field pattern is used to explain the absorption mechanism at the resonance frequency point.The numerical analysis method describes that the proposed structure exhibited more than 80%absorbability between 550 and 900 THz.The Computer Simulation Technology(CST Microwave Studio 2019)software is used to design the proposed structure.Furthermore,CSTHFSS interference is validated by the simulation data with the help of the finite element method(FEM).The proposed NMMA structure is also exhibits glucose concentration sensing capability as applications.So the proposed broadband absorber may have a potential application in THz sensing,imaging(MRI,thermal,color),solar energy harvesting,light modulators,and optoelectronic devices.展开更多
In this paper, the performance of multichannel transmission in cognitive radio is studied. Both QoS constraints and interference limitations are considered. The activities of the primary users (PU)s are initially dete...In this paper, the performance of multichannel transmission in cognitive radio is studied. Both QoS constraints and interference limitations are considered. The activities of the primary users (PU)s are initially detected by cognitive users (CU)s who perform sensing process over multiple channels. They transmit in a single channel at variable power and rates depending on the channel sensing decisions and the fading environment. The cognitive operation is modeled as a state transition model in which all possible scenarios are studied. The QoS constraint of the cognitive users is investigated through statistical analysis. Analytical form for the effective capacity of the cognitive radio channel is found. Optimal power allocation and optimal channel selection criterion are obtained. Impact of several parameters on the transmission performance, as channel sensing parameters, number of available channels, fading and other, are identified through numerical example.展开更多
Currently, communication system requires multiband small antennas for 5G mobile applications. Driven this motivation, this paper proposes a multiband patch antenna for Wi-Fi, WiMAX and 5G applications. The proposed an...Currently, communication system requires multiband small antennas for 5G mobile applications. Driven this motivation, this paper proposes a multiband patch antenna for Wi-Fi, WiMAX and 5G applications. The proposed antenna can effectively operate at 2.4 GHz as Wi-Fi, 7.8 GHz as WiMAX and 33.5 GHz as 5G communication purposes. The proposed antenna arrays have given directional radiation patterns, very small voltage standing wave ratio, high gain (VSWR) and directivity for each aforementioned systems operating frequency. This antenna is made for multiband purpose which can be effective for not only Wi-Fi and WiMAX but also 5G applications.展开更多
The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequ...The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequency bands. The total size of the antenna is 39.25 × 29.25 mm2. The multiband stacked patch antenna is studied and designed using IE3D simulator. For verification of simulation results, the antenna is analyzed by circuit theory concept. The simulated return loss, radiation pattern and gain are presented. Simulated results show that the antenna can be designed to cover the frequency bands from (4.24 GHz to 4.50 GHz, 5.02 GHz to 5.25 GHz) in C-band application, (7.84 GHz to 8.23 GHz) in X-band and (12.16 GHz to 12.35 GHz, 14.25 GHz to 14.76 GHz, 15.25 GHz to 15.51 GHz, 17.52 GHz to 17.86 GHz) in Ku band applications. The bandwidths of each band of the proposed antenna are 5.9%, 4.5%, 4.83%, 2.36%, 3.53%, 1.68% and 1.91%. Similarly the gains of the proposed band are 2.80 dBi, 4.39 dBi, 4.54 dBi, 10.26 dBi, 8.36 dBi and 9.91 dBi, respectively.展开更多
In the present theoretical work, superconducting order parameter (∆) and electronic specific heat (C<sub>es</sub>) of SmOFeAs iron pnictide (IP) superconductor has been studied using multiband (M...In the present theoretical work, superconducting order parameter (∆) and electronic specific heat (C<sub>es</sub>) of SmOFeAs iron pnictide (IP) superconductor has been studied using multiband (MB) model of IP superconductors. Attempt has been made to use the MB structure of IP superconductors and expressions for critical temperature (T<sub>c</sub>) and C<sub>es</sub> are obtained, calculations being made for one, two and three bands of SmOFeAs. It has been found that MB results are close to the experimental value of T<sub>c</sub> for this compound. C<sub>es</sub> calculations show jump of 1.5 × 10<sup>-5</sup> eV/atom K, 4 × 10<sup>-5</sup> eV/atom K and 4 × 10<sup>-5</sup> eV/atom K for one, two and three band models respectively. The study brings out the importance of MB structure in IPs, highlighting the fact that increasing the number of bands, increases T<sub>c</sub>. The specific heat jump (∆C) does not correspond to the BCS value, thereby proving that IPs are unconventional in nature.展开更多
基金the Surface Project of Local Development in Science and Technology Guided by Central Government(No.2021ZYD0041)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+2 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).
文摘Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials.
基金The Higher Education Technology Foundation of Huawei Technologies Co, Ltd (NoYJCB2005016WL)
文摘Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ratio (SNR) compared to the coherent case. To overcome the gap, an effective differential encoding and decoding scheme for multiband UWB systems is proposed. The proposed scheme employs the parallel concatenation of two recursive differential unitary space-frequency encoders at the transmitter. At the receiver, two component decoders iteratively decode information bits by interchanging soft metric values between each other. To reduce the computation complexity, a decoding algorithm which only uses transition probability to calculate the log likelihood ratios (LLRs) for the decoded bits is given. Simulation results show that the proposed scheme can dramatically outperform the conventional differential and even coherent detection at high SNR with a few iterations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60871027,60901029 and 61071058)the National Basic Research Program of China(Grant No.2009CB623306)Key Laboratory of Shaanxi Provincial Synthetic Electronic Information System Foundation,China(Grant No.200905A)
文摘This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and 5.06 THz, which are consistent with 'fingerprints' of some explosive materials. The retrieved material parameters show that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.
基金Projects(61362018,61861019)supported by the National Natural Science Foundation of ChinaProject(1402041B)supported by the Jiangsu Province Postdoctoral Scientific Research Project,China+1 种基金Project(16A174)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject([2016]283)supported by the Research Study and Innovative Experiment Project of College Students,China
文摘In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.
文摘Operation in multiple frequency bands simultaneously is an important enabler for future wireless communication systems. This article presents a new concept for scheduling transmissions in a wireless radio system operating in multiple frequency bands: the Multiband Scheduler (MBS). The MBS ensures that the operation in multiple bands is transparent to higher network layers. Special attention is paid to achieving low delay and latency when operating the system in the multiband mode. In particular, we propose additions to the ARQ procedures in order to achieve this. Deployment details and assessment results are presented for two multiband deployment scenarios. The first scenario is operation in a spectrum sharing context where multiple bands are used: one dedicated band for basic service and one shared extension band for extended services. In the second scenario we consider multiband operation in a relay environment, where the two bands have different propagation properties and relays provide extra coverage and capacity in the whole cell.
文摘To improve the data transmission rate and use spectrum flexibly, a new spectrum allocation method for Multiband Impulse Radio UWB (MB-IR-UWB) is proposed in this paper based on the band-limited and orthogonal characteristics of Prolate Spheroidal Wave Function (PSWF). The system model is built and the bit error rate (BER) formula is deprived by binary time hopping pulse position modulation under additive white Gaussian noise. Moreover, the system performance is analyzed via MATLB simulation. The results indicate that MB-IR-UWB system performance of BER is the same with single-band UWB. However, in the proposed scheme the data can be transmitted in multiple parallel bands, which enjoys much higher transmission rate. In addition, PSWF pulse duration affects the BER performance.
文摘Endoscopic resection(ER) is at present an accepted treatment for superficial gastrointestinal neoplasia. ER provides similar efficacy to surgery; however, it is minimally invasive and less expensive. Endoscopic mucosal resection(EMR) is superior to biopsy for diagnosing advanced dysplasia and can change the diagnostic grade and the management. Several EMR techniques have been described that are alternatively used dependent upon the endoscopist personal experience, the anatomic conditions and the endoscopic appearance of the lesion to be resected. The literature suggests that EMR offers comparable outcomes to surgery for selected indications. EMR techniques using a cap fitted endoscope and EMR using a ligation device [multiband mucosectomy(MBM)] are the most frequently use. MBM technique does not require submucosal injection as with the endoscopic resectioncap technique, multiple resections can be performed with the same snare, pre-looping the endoscopic resection-snare in the ridge of the cap is not necessary, MBM does not require withdrawal of the endoscope between resections and up to six consecutive resections can be performed. This reduces the time and cost required for the procedure, while also reducing patient discomfort. Despite the increasing popularity of MBM, data on the safety and efficacy of this technique in upper gastrointestinal lesions with advanced dysplasia, defined as those lesions that have high-grade dysplasia or early cancer, is limited.
基金supported by the National Science & Technology Major Projects (No. 2012ZX03004008)by the National Natural Science Foundation of China (No. 61376082)by the Tianjin Natural Science Foundation (No. 13JCZDJC25900)
文摘A 0.18 μm CMOS low noise amplifier(LNA) by utilizing noise-canceling technique was designed and implemented in this paper. Current-reuse and self-bias techniques were used in the first stage to achieve input matching and reduce power consumption. The core size of the proposed CMOS LNA circuit without inductor was only 128 μm 9226 μm. The measured power gain and noise figure of the proposed LNA were 20.6 and 1.9 dB,respectively. The 3-dB bandwidth covers frequency from 0.1 to 1.2 GHz. When the chip was operated at a supply voltage of 1.8 V, it consumed 25.69 mW. The high performance of the proposed LNA makes it suitable for multistandard low-cost receiver front-ends within the above frequency range.
基金Project supported by the National Natural Science Foundation of China(Grant No.11504006)the Key Scientific Research Project of Higher Education of Henan Province,China(Grant No.15A140002)the Science and Technology Planning Project of Henan Province,China(Grant No.142300410366)
文摘A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region.
文摘AIM:To assess the cost savings of reloading the multiband ligator in endoscopic esophageal variceal ligation (EVL) used on the same patient for subsequent sessions. METHODS:This single centre retrospective descriptive study analysed patients undergoing variceal ligation at a tertiary care centre between 1st January, 2003 and 30th June, 2006. The multiband ligator was reloaded with six hemorrhoidal bands using hemorrhoidal ligator for the second and subsequent sessions. Analysis of cost saving was done for the number of follow-up sessions for the variceal eradication. RESULTS:A total of 261 patients underwent at least one session of endoscopic esophageal variceal ligation between January 2003 and June 2006. Out of 261, 108 patients (males 67) agreed to follow the eradication program and underwent repeated sessions. A total of 304 sessions was performed with 2.81 sessions per patient on average. Thirty-two patients could not complete the programm. In 76 patients (70%), variceal obliteration was achieved. The ratio of the costs for the session with reloaded ligator versus a session with a new ligator was 1:2.37. Among the patients who completed esophageal varices eradication, cost saving with reloaded ligator was 58%. CONCLUSION:EVL using reloaded multiband ligators for the follow-up sessions on patients undergoing variceal eradication is a cost saving procedure. Reloading the ligator thus is recommended especially for developing countries where most of the patients are not health insured.
基金Supported by the National Natural Science Foundation of China (No. 60572081)
文摘This paper proposes an algorithm that adopts the harmonic regeneration as post-processing to improve the performance of speech enhancement using traditional Short Time Spectral Amplitude(STSA).The proposed algorithm aims to alleviate the distortion of the high harmonics of enhanced speech via the traditional STSA,and consequently improves the speech quality.We first detect the pitch,or fundamental frequency,of the enhanced speech via the traditional STSA,and then,divide the whole spectrum into multiple sub-bands which center on each harmonic.After that,a series of specially designed windows centered on each harmonic are applied to all the sub-bands,in order to redistribute the energy in the sub-bands.The results of experiment demonstrate that the method has both theo-retical and practical basis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804178 and 11274188)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2018BA027).
文摘We design an actively tunable polarization-sensitive multiband absorber in the mid-infrared region,which consists of stacked graphene multilayers separated by dielectric layers on a metal mirror.Benefiting from the anisotropic structure,the absorber has dual absorption bands with almost perfect absorption at different wavelengths under the x and y polarizations.Analyzing the electric field amplitude distributions and the surface currents,we find that the absorption peaks under the same polarization are excited in the graphene layers independently.Therefore,more absorption bands can be achieved by increasing the graphene layers.Adjusting the Fermi energy of the graphene layers,the working wavelengths of the polarization-sensitive multiband absorbers can be tuned actively,and thus achieving a wide band regulation range.Besides,the peak number and the peak strength of the multiband absorber can be actively controlled by the polarization angle as well.We also propose a method to design an actively tunable polarization-sensitive multiband absorber,which may have potential applications in mid-infrared devices,such as polarization-sensitive filters and detectors.
文摘In this paper, we study the dynamic behavior and quasi-energy spectrum of multiband superlattice Bloch electrons in quantum kicked potential. We show analytically and numerically the avoided crossing and band suppression about the quasi-energy spectrum, the dynamic nonlocalization, and the electron oscillation behavior between two bands.
基金Sponsored by the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2010096)the Heilongjiang Post-Doctorial Fi-nancial Assistance (Grant No. LBH-Z09187)
文摘A kind of novel muhiband antenna with square-nested fractal is proposed and designed, including printed monopole antenna and dipole antenna, which are nested with a series of similar square elements. The antennas can synchronously operate in multiple frequencies, covering the four required frequencies, 2.4GHz/ 3.5GHz/5.2GHz/5.8GHz, for WLAN/WiMAX application. The antenna surface currents are simulated by CST MWS, a three-dimension full-wave electromagnetic simulator, and the multiband operating mechanism has been explained from analysis of the simulation results. Then the models of the two proposed antennas fed by coplanar waveguide (monopole antenna) and balanced microstripline (dipole antenna), respectively, have been obtained. Finally, prototypes of the two antennas have been manufactured and measured in anechoic chamber. The results well match the simulation results, which verifies the feasibility of design idea. Moreover, these antennas are miniature and the design idea can be easily applied into other types of nested structure, the features of which make the Proposed antennas have promising application in muhiband fields.
基金This work is supported by the Universiti Kebangsaan Malaysia research grant GGPM 2020-005.
文摘This study presents an Epsilon Mu near-zero(EMNZ)nanostructured metamaterial absorber(NMMA)for visible regime applications.The resonator and dielectric layers are made of tungsten(W)and quartz(fused),where the working band is expanded by changing the resonator layer’s design.Due to perfect impedance matching with plasmonic resonance characteristics,the proposed NMMA structure is achieved an excellent absorption of 99.99%at 571 THz,99.50%at 488.26 THz,and 99.32%at 598 THz frequencies.The absorption mechanism is demonstrated by the theory of impedance,electric field,and power loss density distributions,respectively.The geometric parameters are explored and analyzed to show the structure’s performance,and a near-field pattern is used to explain the absorption mechanism at the resonance frequency point.The numerical analysis method describes that the proposed structure exhibited more than 80%absorbability between 550 and 900 THz.The Computer Simulation Technology(CST Microwave Studio 2019)software is used to design the proposed structure.Furthermore,CSTHFSS interference is validated by the simulation data with the help of the finite element method(FEM).The proposed NMMA structure is also exhibits glucose concentration sensing capability as applications.So the proposed broadband absorber may have a potential application in THz sensing,imaging(MRI,thermal,color),solar energy harvesting,light modulators,and optoelectronic devices.
文摘In this paper, the performance of multichannel transmission in cognitive radio is studied. Both QoS constraints and interference limitations are considered. The activities of the primary users (PU)s are initially detected by cognitive users (CU)s who perform sensing process over multiple channels. They transmit in a single channel at variable power and rates depending on the channel sensing decisions and the fading environment. The cognitive operation is modeled as a state transition model in which all possible scenarios are studied. The QoS constraint of the cognitive users is investigated through statistical analysis. Analytical form for the effective capacity of the cognitive radio channel is found. Optimal power allocation and optimal channel selection criterion are obtained. Impact of several parameters on the transmission performance, as channel sensing parameters, number of available channels, fading and other, are identified through numerical example.
文摘Currently, communication system requires multiband small antennas for 5G mobile applications. Driven this motivation, this paper proposes a multiband patch antenna for Wi-Fi, WiMAX and 5G applications. The proposed antenna can effectively operate at 2.4 GHz as Wi-Fi, 7.8 GHz as WiMAX and 33.5 GHz as 5G communication purposes. The proposed antenna arrays have given directional radiation patterns, very small voltage standing wave ratio, high gain (VSWR) and directivity for each aforementioned systems operating frequency. This antenna is made for multiband purpose which can be effective for not only Wi-Fi and WiMAX but also 5G applications.
文摘The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequency bands. The total size of the antenna is 39.25 × 29.25 mm2. The multiband stacked patch antenna is studied and designed using IE3D simulator. For verification of simulation results, the antenna is analyzed by circuit theory concept. The simulated return loss, radiation pattern and gain are presented. Simulated results show that the antenna can be designed to cover the frequency bands from (4.24 GHz to 4.50 GHz, 5.02 GHz to 5.25 GHz) in C-band application, (7.84 GHz to 8.23 GHz) in X-band and (12.16 GHz to 12.35 GHz, 14.25 GHz to 14.76 GHz, 15.25 GHz to 15.51 GHz, 17.52 GHz to 17.86 GHz) in Ku band applications. The bandwidths of each band of the proposed antenna are 5.9%, 4.5%, 4.83%, 2.36%, 3.53%, 1.68% and 1.91%. Similarly the gains of the proposed band are 2.80 dBi, 4.39 dBi, 4.54 dBi, 10.26 dBi, 8.36 dBi and 9.91 dBi, respectively.
文摘In the present theoretical work, superconducting order parameter (∆) and electronic specific heat (C<sub>es</sub>) of SmOFeAs iron pnictide (IP) superconductor has been studied using multiband (MB) model of IP superconductors. Attempt has been made to use the MB structure of IP superconductors and expressions for critical temperature (T<sub>c</sub>) and C<sub>es</sub> are obtained, calculations being made for one, two and three bands of SmOFeAs. It has been found that MB results are close to the experimental value of T<sub>c</sub> for this compound. C<sub>es</sub> calculations show jump of 1.5 × 10<sup>-5</sup> eV/atom K, 4 × 10<sup>-5</sup> eV/atom K and 4 × 10<sup>-5</sup> eV/atom K for one, two and three band models respectively. The study brings out the importance of MB structure in IPs, highlighting the fact that increasing the number of bands, increases T<sub>c</sub>. The specific heat jump (∆C) does not correspond to the BCS value, thereby proving that IPs are unconventional in nature.