期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Boosting ultra-wide temperature dielectric stability of multilayer ceramic capacitor through tailoring the combination types of polar nanoregions
1
作者 Jiacheng Liu Kaibiao Xi +5 位作者 Beibei Song Huarong Cheng Xiaole Yu Mupeng Zheng Mankang Zhu Yudong Hou 《Journal of Materiomics》 SCIE CSCD 2024年第4期751-761,共11页
With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh enviro... With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh environmental conditions.Relaxor ferroelectrics with diffuse phase transition feature are potential dielectrics for the construction of UWT MLCCs.However,how to ensure high dielectric constant together with low dielectric loss in the wide temperature region is still a big challenge.Here,the above difficulties are addressed by tailoring the combination types of polar nanoregions(PNRs)in the(1-x)(0.8Na_(0.5)Bi_(0.5)TiO_(3)-0.2K_(0.5)Bi_(0.5)TiO_(3))-xNaTaO3(NBT-KBT-xNT)system.Compared with PNRS types of P4bm+R3c and P4bm+Pbnm,the combination type of P4bm+Pbnm+R3c PNRs in NBT-KBT-0.31NT is the most beneficial to obtain comprehensive excellent dielectric performance because it can balance the relationship between high dielectric constant and temperature stability over a wide temperature region.Further,by optimizing the laminating pressure and co-firing temperature to realize a tight interfacial structure between the dielectric layer and the Pt inner electrode,a record-high dielectric constant(er=(907%±15%))together with low dielectric loss(tan δ≤0.025)is achieved over an ultra-wide range from-61℃ to 306℃ for NBT-KBT-0.31 NT MLCC,demonstrating that tailoring the combination types of PNRs is a powerful strategy in designing UWT MLCC dielectrics. 展开更多
关键词 Lead-free dielectrics Ultra-wide temperature multilayer ceramic capacitor Polar nanoregion
原文传递
Enhanced breakdown strength of BaTiO_(3)-based multilayer ceramic capacitor by structural optimization 被引量:1
2
作者 Qian Liu Hua Hao +5 位作者 Qing-Hu Guo Zhong-Hui Shen Jian Wang Ming-He Cao Zhong-Hua Yao Han-Xing Liu 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2552-2561,共10页
0.5 wt%Nb_(2)O_(5)doped 0.12BiAlO_(3)-0.88BaTiO_(3)(12BA5N)multilayer ceramic capacitor(MLCC-1)was prepared,which satisfied EIA X7R specification(where X is the minimum temperature,R is the percentage of capacitance v... 0.5 wt%Nb_(2)O_(5)doped 0.12BiAlO_(3)-0.88BaTiO_(3)(12BA5N)multilayer ceramic capacitor(MLCC-1)was prepared,which satisfied EIA X7R specification(where X is the minimum temperature,R is the percentage of capacitance variation limit)at 1 kHZ.The distribution of internal electric field under breakdown voltage was simulated by finite element method(FEM),indicating that the electric field strength increased significantly at the terminal of internal electrode.These areas may become the headstream of breakdown for MLCC-1 due to the shape mutation.In order to improve the breakdown performance of MLCC-1,it was optimized by 12BA5N+2G green sheets(prepared by 12BA5N ceramic powder with 2 wt%B-Al-Si glass additive),then MLCC-2 was obtained which satisfied EIA X8R specification.Its BDS rose from 20 to29.4 kV·mm^(-1),and the electric field distribution of dielectric layer was also analyzed by FEM.Besides,it was also found that the grain size and the dielectric constants of"core"and"shell"parts for the 12BA5N+2G dielectric layer both contributed to the enhanced BDS of MLCC-2according to the simulation results from FEM. 展开更多
关键词 multilayer ceramic capacitor(MLCC) Breakdown strength(BDS) SIMULATION Grain size Dielectric constant
原文传递
Unusual local electric field concentration in multilayer ceramic capacitors
3
作者 Wentong Du Huarong Zeng +5 位作者 Weiwei Yang Kunyu Zhao Faqiang Zhang Guorong Li Yongxiang Li Zhifu Liu 《Journal of Materiomics》 SCIE CSCD 2023年第2期403-409,共7页
Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element si... Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element simulation to understand the effect of pores on the electric reliability of MLCCs.Electricfield is found to be concentrated significantly in the vicinity of these pores and the strength of the local electric-field is 1.5e5.0 times of the nominal strength.Unexpectedly,the concentration degree of the pores in the inner electrode is much higher than that in the dielectrics and dielectric-electrode interfaces.Meanwhile,geometry orientations are found to have a remarkable influence on the local electric field strength.The pores act as an insulation degradation precursor via local electric,thermal center,and oxygen vacancies accumulation center.Such unusual local electric field concentration of multitype pores can provide new insights into the understanding of insulation degradation evolution,processing tailoring and design optimization for MLCCs. 展开更多
关键词 multilayer ceramic capacitors(MLCCs) Kelvin probe force microscopy PORE Local electric field concentration
原文传递
Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors 被引量:13
4
作者 Peiyao ZHAO Ziming CAI +3 位作者 Longwen WU Chaoqiong ZHU Longtu LI Xiaohui WANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1153-1193,共41页
The growing demand for high-power-density electric and electronic systems has encouraged the development of energy-storage capacitors with attributes such as high energy density,high capacitance density,high voltage a... The growing demand for high-power-density electric and electronic systems has encouraged the development of energy-storage capacitors with attributes such as high energy density,high capacitance density,high voltage and frequency,low weight,high-temperature operability,and environmental friendliness.Compared with their electrolytic and film counterparts,energy-storage multilayer ceramic capacitors(MLCCs)stand out for their extremely low equivalent series resistance and equivalent series inductance,high current handling capability,and high-temperature stability.These characteristics are important for applications including fast-switching third-generation wide-bandgap semiconductors in electric vehicles,5G base stations,clean energy generation,and smart grids.There have been numerous reports on state-of-the-art MLCC energy-storage solutions.However,lead-free capacitors generally have a low-energy density,and high-energy density capacitors frequently contain lead,which is a key issue that hinders their broad application.In this review,we present perspectives and challenges for lead-free energy-storage MLCCs.Initially,the energy-storage mechanism and device characterization are introduced;then,dielectric ceramics for energy-storage applications with aspects of composition and structural optimization are summarized.Progress on state-of-the-art energy-storage MLCCs is discussed after elaboration of the fabrication process and structural design of the electrode.Emerging applications of energy-storage MLCCs are then discussed in terms of advanced pulsed power sources and high-density power converters from a theoretical and technological point of view.Finally,the challenges and future prospects for industrialization of lab-scale lead-free energy-storage MLCCs are discussed. 展开更多
关键词 multilayer ceramic capacitors(MLCCs) lead-free dielectric ceramics energy storage high power density
原文传递
Energy storage properties of 0.87BaTiO3-0.i3Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers 被引量:10
5
作者 Hongxian WANG Peiyao ZHAO +2 位作者 Lingling CHEN Longtu LI Xiaohui WANG 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第3期292-302,共11页
Multilayer ceramic capacitors(MLCCs)for energy storage applications require a large discharge energy density and high discharge/charge efficiency under high electric fields.Here,0.87BaTiO3--0.13Bi(Zn23(Nbog8sTao.1s)u3... Multilayer ceramic capacitors(MLCCs)for energy storage applications require a large discharge energy density and high discharge/charge efficiency under high electric fields.Here,0.87BaTiO3--0.13Bi(Zn23(Nbog8sTao.1s)u3)O3(BTBZNT)MLCCs with double active dielectric layers were fabricated,and the effects of inner electrode and sintering method on the energy storage properties of BTBZNT MLCCs were investigated.By using the pure Pt as inner electrode instead of Ago.6Pdo4 aloys,an alternating current(AC)breakdown strength(BDS)enhancement from 1047 to 1500 kV/cm was achieved.By investigating the leakage current behavior of BTBZNT MLCCs,the Pt inner electrode and two-step sintering method(TSS)were confirmed to enhance the Schottky barrier and minimize the leakage current density.With relatively high permitivity,dielectric sublinearity,and ultra-high BDS,the Pt TSS BTBZNT MLCCs exhibited a surprisingly discharge energy density(Udis)of 14.08 J/cm2.Moreover,under an operating electric field of 400 kV/cm,the MLCCs also exhibited thermal stability with Udis variation<±8%over a wide temperature (t) range from-50 to 175℃ and cycling reliability with Uais reduction<0.3%after 3000 charge-discharge cycles.These remarkable performances make Pt TSS BTBZNT MLCCs promising for energy storage applications. 展开更多
关键词 BATIO multilayer ceramic capacitor(MLCC) leakage current energy storage
原文传递
Large electrocaloric effect in BaTiO_3 based multilayer ceramic capacitors 被引量:3
6
作者 LU Biao WEN XinHua +8 位作者 TANG ZhenHua LIANG Bo TAO Tao XIE ZhiWei ZHANG TianFu TANG XinGui XIANG Yong LIAO Jie LU ShengGuo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第7期1054-1058,共5页
The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow ... The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow due to the heat dissipation. The results are compared with those calculated from Maxwell relations by using the polarization data obtained from the polarization–electric field hysteresis loops. The direct method shows a larger ECE temperature change, which is accounted for the situation approaches an ideal condition. For the indirect method using Maxwell relations, only the polarization projection along the electric field was taken into account, which will be less than the randomly distributed real polarizations that contribute to the ECE. The MLCCs exhibit a broad peak of ECE around 80 C, which will be favorite for the practical ECE cooling devices. 展开更多
关键词 multilayer ceramic capacitors maxwell relations electrocaloric effect polarization–electric field hysteresis loop differential scanning calorimetry
原文传递
Effect of SiO_2 addition on the dielectric properties and microstructure of BaTiO_3-based ceramics in reducing sintering 被引量:2
7
作者 Ying-chieh Lee Wei-hua Lu +1 位作者 Su-hei Wang Chai-wei Lin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期124-127,共4页
The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state me... The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state method with 0.075mol%, 0.15mol%, and 0.3mol%, respectively. The SiO2-doped BaTiO3-based ceramic with high density and uniform grain size were obtained, which were sintered in reducing atmosphere. A scanning electron microscope, X-ray diffraction, and LCR meter were used to determine the microstructure as well as the dielectric properties. SiO2 can form a liquid phase belonging to the ternary system of BaO-TiO2-SiO2, leading to the formation of BaTiO3 ceramics with high density at a lower sintering temperature. The SiO2-doped BaTiO3-based ceramics can be sintered to a theoretical density higher than 95% at 1220℃ with a soaking time of 2 h. The dielectric constants of the sample with 0.15mol% SiO2 addition sintered at 1220℃ is about 9000. Doping with a small amount of silica can improve the sintering and dielectric properties of BaTiO3-based ceramics. 展开更多
关键词 barium titanate multilayer ceramic capacitor (MLCC) reducing atmosphere dielectric properties
下载PDF
Energy storage properties of surface-modified BaTiO_(3)ceramic films for multilayer capacitors applications
8
作者 Hongxian Wang Chunyan Zeng +1 位作者 Baibo Liu Xiaohui Wang 《Journal of Advanced Dielectrics》 CAS 2019年第3期55-59,共5页
Surface-modified BaTiO_(3)of 230 nm average grain size were synthesized by coating BaTiO_(3)particles with 3 wt.%Al2O_(3)and 1 wt.%SiO2.Ceramic films of different thicknesses were prepared via tape casting and laminat... Surface-modified BaTiO_(3)of 230 nm average grain size were synthesized by coating BaTiO_(3)particles with 3 wt.%Al2O_(3)and 1 wt.%SiO2.Ceramic films of different thicknesses were prepared via tape casting and laminating processes followed by two-steps sintering method.After sintering,the average grain size of Surface-modified BaTiO_(3)ceramic slightly increased to 275 nm,and great enhancement of AC breakdown strength(BDS)from 184 kV/cm to 665 kV/cm was obtained as the thickness of ceramic films decreased from 63μm to 12μm,resulting in improvement of discharge energy density from 1.14 J/cm3to 4.06 J/cm3.Because of their low-cost,easily fabrication,lead-free,improved AC BDS and discharge energy density,surface-modified BaTiO_(3)ceramic films appeared promising for applications in multilayer energy storage capacitors. 展开更多
关键词 ceramic films multilayer ceramic capacitors FERROELECTRICS energy storage
原文传递
A Technology for Recovering Silver and Palladium from MLCC Scraps
9
作者 贺小塘 赵云昆 《Rare Metals》 SCIE EI CAS CSCD 1998年第1期68-72,共5页
technology for recovering silver and palladium from multilayer ceramic capacitors (MLCC) scraps was studied. 91% silver and 98% palladium are respectively leached from scraps (200 mesh) under the conditions of 4 mol/L... technology for recovering silver and palladium from multilayer ceramic capacitors (MLCC) scraps was studied. 91% silver and 98% palladium are respectively leached from scraps (200 mesh) under the conditions of 4 mol/L HNO_3, 80℃, 2 h (s/l=1∶3). Silver can be precipitated with hydrochloric acid from leaching solutions. Purity of coarse silver bullion obtained from melting silver chloride is 98%. Silver recovery is 88%. Palladium can be reduced and precipitated respectively from silver raffinate and leaching residue scrub solutions by iron powders and butyl xanthate. Purity of palladium is 99.95% by traditional refining method. Palladium recovery is 95%. 展开更多
关键词 multilayer ceramic capacitors SILVER PALLADIUM RECOVERY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部