The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharop...The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharoplast appears in the young spermatid. The differentiating blepharoplast is approximately a spherical body, which is composed of densely stained granular material in the center and some cylinders outside of it. The differentiated blepharoplast is also a sphere, but without the densely stained material in the center, consisting of scattered or radially arranged cylinders. The MLS seen in the spermatid lies between the basal bodies and the giant mitochondrion. In the early developmental stage, the MLS only consists of lamellar layers, each of which runs parallel to one another and forms a strip. In the mid stage, the MLS is composed of the microtubular ribbon (MTr), the lamellar layers and a layer of plaque. In the late stage, the MLS forms accessory band, osmiophilic crest and a layer of osmiophilic material. The MTr grows out from the MLS and extends along the surface of the nucleus to unite with the nuclear envelope in a complex. The basal body coming from the cylinder produces the axoneme of the flagella in the distal end and the wedge-shaped structure in the proximal end, respectively. In the present study, the ultrastructural features of blepharoplast and the MLS of the protoleptosporangiopsida fern, O. cinnamomea var. asiatica, have been described and compared with those of other kinds of pteridophytes in detail. The lamellar layers appearing before the formation of the MTr was found and reported for the first time.展开更多
The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and ele...The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and electric potential as primary variables of the problem,and the elasto-thermal,elasto-electric and pure elastic problems are obtained as particular cases by deleting the appropriate contributions in the general elasto-thermo-electric variational statement.The most sensitive issue is given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and analysis considered(mechanical load,temperature or electric potential imposed and free vibration analysis).This feature means that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and the load applied.Results about multilayered plates and shells suggest the appropriate extension of the variational statement for each analysis,and they give an exhaustive explanation for several forms of the PVD proposed.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning el...Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.展开更多
Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from pla...Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.展开更多
We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outsid...We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.展开更多
We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectr...We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.展开更多
The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing...The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.展开更多
A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiB...A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.展开更多
To provide preliminary information for design of rare earth phosphate-contained machinable ceramic, sintering and microstructure of LaPO_4 were investigated. The results show that LaPO_4 can be sintered independently ...To provide preliminary information for design of rare earth phosphate-contained machinable ceramic, sintering and microstructure of LaPO_4 were investigated. The results show that LaPO_4 can be sintered independently without other components from 1580 to 1620 ℃, and its grains are ellipsoidal or orbicular in surface but multilayer in the inside. The fracture of LaPO_4 ceramic presents transgranular along the larger grains and along-granular for the smaller grains. It is supposed that multi-layer structural LaPO_4 may contribute to machinabilities for those LaPO_4-contained ceramic duo to its low cleavage energy, which provides a easy path for cracks propagate of material removing, also leads crack deflections, branching and blunting helping to prevent macroscopic fractures from propagation beyond the local machining area.展开更多
Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for el...Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for elliptical cylinder waves. The formulas of reflection and transmission coefficients for an elliptical cylinder multilayer structure are driven. Reflection and transmission coefficients of elliptical cylinder waves by a single elliptical cylinder interface is presented. The obtained formulas can be generalized to the cold plasma filled structures and thus the obtained results in the limit of circular cylinder structures are investigated.展开更多
TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then c...TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then conditions under which pure TEn (TMn) modes may exist in multilayer waveguide structure with discontinuities are presented. E (H) step wavguides, ridged wavguides, microstrip lines and fin lines all satisfy the conditions, and hold for TEn (TMn) mode. The conventional conclusion that ridged waveguides with inhomogeneous dielectric-slab loading, microstrip lines and fin lines only hold for hybrid modes is revised. Compared with hybrid modes, the number of unknown variations and matching equations is reduced by half for pure TEn (TMn) modes, and the computation cost is decreased dramatically.展开更多
Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation ...Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).展开更多
Zirconate-based dielectric ceramics are potential materials for base metal electrode multilayer ceramic capacitors(BME-MLCCs)due to their exceptional chemical and thermal stability,as well as excellent dielectric prop...Zirconate-based dielectric ceramics are potential materials for base metal electrode multilayer ceramic capacitors(BME-MLCCs)due to their exceptional chemical and thermal stability,as well as excellent dielectric properties.In this work,(Sr_(0.7)Ca_(0.3))1.02(Zr_(0.95−x)Ti_(0.05)Mn_(x))O_(3)+δ(SCZTM,0≤x≤0.05)ceramics with two coexisting phases were prepared using a solidstate reaction method in a reducing atmosphere.This study investigates the impact of Mn doping on sintering temperature,microstructure,and electrical properties of SCZTM ceramics.Mn doping can reduce the sintering temperature from 1450 to 1300℃.The impact of Mn doping on the structure and phonon vibration is minimal,resulting in a negligible effect on the intrinsic loss.The valence states of Mn ions and defects were characterized by X-ray photoelectron spectroscopy(XPS)and thermally stimulated depolarization current(TSDC)analysis.The results demonstrate the significant role of Mn doping in nonintrinsic loss.Due to the decrease in the concentration of oxygen vacancies(V_(O)),SCZTM(x=0.01)ceramics exhibit attractive properties:resistivity(ρ)=8.93×10^(14)Ω·cm,dielectric constant(ε_(r))=36.16,dielectric loss(tanδ)=2.43×10^(–4),temperature dependence of dielectric constant(τ_(ε))=15.44 ppm/℃(@−55–200℃,1 MHz),Q×f=30,257 GHz(@6.12 GHz),and temperature coefficient of resonant frequency(τf)=–9.9 ppm/℃.SCZTM(x=0.01)ceramic powders were used to successfully fabricate Ni-based multilayer ceramic capacitors(MLCCs)with a high insulation resistance of IR≥39.6 TΩ,an ultralow dielectric loss of tanδ=0.2×10^(–4),and a wide operating temperature range(temperature coefficient of capacitance(T_(cc))=10.88 ppm/℃,@−55–200℃,1 MHz).SCZTM ceramics exhibit properties that make them suitable for use as BMEMLCC materials with potential market applications.展开更多
The propagation properties of the surface acoustic waves(SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechan...The propagation properties of the surface acoustic waves(SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.展开更多
In this paper,the effect of stereom structure on the mechanical behavior of the Sea Urchin Inorganic Skeleton(SUIS)has been studied.The stereom microstructure of both Anthocidaris crassispina and Tripnenstes gratilla ...In this paper,the effect of stereom structure on the mechanical behavior of the Sea Urchin Inorganic Skeleton(SUIS)has been studied.The stereom microstructure of both Anthocidaris crassispina and Tripnenstes gratilla was characterized by Scanning Electron Microscopy(SEM).Results indicate that a three-layer porous structure consisting of a growth,a support,and a resorption(GSR)layer is a common denominator for both species.The effect of GSR layer order on the mechanical behavior of the SUIS was studied by a finite element method.The results show that the GSR model could effectively reduce the maximum tensile stress on its meridional sutures under unidirectional pressure,hydrostatic pressure,and self-weight situation.For a fabricated three-layered ceramic test strips with different layer orders,the mechanical properties have a completely opposite performance compared with the compressive properties of the calculated SUIS-Iike models.This indicates that the GSR structure can effectively improve the mechanical properties of the SUIS,but it cannot be applied to bionics without considering its synergistic effect with the macro-structure of the SUIS.This is a typical example of bionic invalidation by single structure,where multi-level structure bionics may be an effective solution.展开更多
For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the...For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the MWCNTs provides electrical conductivity characteristics necessary for making desired EMI shielding materials. The novel process involves unique designing of chemical compositions and mineralogical phases of red mud, MWCNTs together with appropriate additive and solvent which results in the simultaneous and synergistic chemical reactions among various constituents thereby forming tailored precursor powder. Further, the ceramic processing of tailored precursor powder in appropriate environment enables formation of advanced ARMC shielding material having a variety of ceramic phases with multi elemental compositions and multi layered crystal structures. The synthesized material was characterized by various techniques namely XRD, PL, FESEM, EDXA. The reflection loss (R. L.) of the sample was calculated based on the measured complex permittivity and permeability. The advanced ARMC material with thickness t = 1.5 mm showed a minimum R. L. of -35.5 Db at 14.0 GHz with a response band width of 1.8 GHz. Thus, the developed advanced ARMC material acts as a good EMI wave absorber.展开更多
An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available ...An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available access points(APs),are utilized to establish the radio map in the off-line phase.And in the on-line phase,the two or three dimensional coordinates of mobile terminals(MTs) are estimated according to the similarity between the new recorded RSS or SNR and fingerprints pre-stored in radio map.Although the feed-forward ANN with three layers is sufficient to describe any nonlinear mapping relationship between inputs and outputs with finite discontinuous points,the efficient inputs for better training performances are difficult to be determined because of complex and dynamic indoor environment.Then,the discussion of distance relativity for different signal characteristics and optimal strategies for multi-mode phenomenon avoidance is presented.And also,the feasibility and effectiveness of this method are verified based on the experimental comparison with normal ANN without area division,K-nearest neighbor(KNN) and probability methods in typical office environment.展开更多
In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)...In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)2acac(10 nm)/Alq3(25 nm)/BCP(5 nm)/Cs F(1 nm)/Al(150 nm)(x= 0.15,2.5 and 3.0 wt%),where NPB and BCP are used as the hole-injecting layer,electron transporting and hole blocking layer,respectively.White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration.The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m^2 at 14 V.The Commission International de I'Eclairage(CIE)(1931) coordinates of white emission are well within the white zone,which moves from(0.35,0.33) to(0.26,0.30) when the applied voltage is varied from 5 V to 14 V.展开更多
The precipitation of epsilon copper at 1023 K ageing in ferrite antibacterial stainless steel was investigated by a combination of electron microscopy and micro-Vickers hardness measurement. The results show that epsi...The precipitation of epsilon copper at 1023 K ageing in ferrite antibacterial stainless steel was investigated by a combination of electron microscopy and micro-Vickers hardness measurement. The results show that epsilon copper precipitation occurs within 90 s, Complex multilayer structure confirmed as twins and stacking faults on {111}ε-Cu planes was observed in the precipitates. The precipitates grow by the lengthwise enlargement of a set of parallel layers, having [111]ε-Cu and [112]ε-Cu preferred growth orientations. The volume fraction of precipitates f formed within 120 min can be predicted by a modified Avrami equation (In1/1-f= kt + b). Simultaneously, substituent atom clusters with a size of 5-10 nm was found to occur in the solution and cause matrix strain. The precipitate morphology and distribution on the surface of ferrite antibacterial stainless steel are associated with surface crystallographic orientation of the matrix. The precipitates are predominantly located within the ferrite grains of 〈110〉 orientation. The precipitates located on {111}α-Fe surface planes have sphere or ellipse shape.展开更多
文摘The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharoplast appears in the young spermatid. The differentiating blepharoplast is approximately a spherical body, which is composed of densely stained granular material in the center and some cylinders outside of it. The differentiated blepharoplast is also a sphere, but without the densely stained material in the center, consisting of scattered or radially arranged cylinders. The MLS seen in the spermatid lies between the basal bodies and the giant mitochondrion. In the early developmental stage, the MLS only consists of lamellar layers, each of which runs parallel to one another and forms a strip. In the mid stage, the MLS is composed of the microtubular ribbon (MTr), the lamellar layers and a layer of plaque. In the late stage, the MLS forms accessory band, osmiophilic crest and a layer of osmiophilic material. The MTr grows out from the MLS and extends along the surface of the nucleus to unite with the nuclear envelope in a complex. The basal body coming from the cylinder produces the axoneme of the flagella in the distal end and the wedge-shaped structure in the proximal end, respectively. In the present study, the ultrastructural features of blepharoplast and the MLS of the protoleptosporangiopsida fern, O. cinnamomea var. asiatica, have been described and compared with those of other kinds of pteridophytes in detail. The lamellar layers appearing before the formation of the MTr was found and reported for the first time.
文摘The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and electric potential as primary variables of the problem,and the elasto-thermal,elasto-electric and pure elastic problems are obtained as particular cases by deleting the appropriate contributions in the general elasto-thermo-electric variational statement.The most sensitive issue is given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and analysis considered(mechanical load,temperature or electric potential imposed and free vibration analysis).This feature means that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and the load applied.Results about multilayered plates and shells suggest the appropriate extension of the variational statement for each analysis,and they give an exhaustive explanation for several forms of the PVD proposed.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金Project(2011CB605804) supported by the National Basic Research Development Program of ChinaProject(2015JJ3167) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531810) supported by the Postdoctoral Science Foundation of China
文摘Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.
基金financial supports from the National Natural Science Foundation of China(Nos.U1502272,51901204)the Precious Metal Materials Genome Engineering in Yunnan Province,China(Nos.2019ZE001,202002AB080001)。
文摘Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.
文摘We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971122)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2011727)+1 种基金the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201103)the Funding of Graduate Innovation Center in NUAA (Grant No. kfjj20110216)
文摘We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.
基金supported by the National Natural Science Foundation of China(No.60571010)Natural Science Foundation of Hubei province.
文摘The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.
基金Supported by the Fund of National Key Laboratory of High Power Microwave Technology under Grant No 2014-763.xy.kthe National Natural Science Foundation of China under Grant No 21573054the Joint Funds Key Project of the National Natural Science Foundation of China under Grant No U1537214
文摘A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.
文摘To provide preliminary information for design of rare earth phosphate-contained machinable ceramic, sintering and microstructure of LaPO_4 were investigated. The results show that LaPO_4 can be sintered independently without other components from 1580 to 1620 ℃, and its grains are ellipsoidal or orbicular in surface but multilayer in the inside. The fracture of LaPO_4 ceramic presents transgranular along the larger grains and along-granular for the smaller grains. It is supposed that multi-layer structural LaPO_4 may contribute to machinabilities for those LaPO_4-contained ceramic duo to its low cleavage energy, which provides a easy path for cracks propagate of material removing, also leads crack deflections, branching and blunting helping to prevent macroscopic fractures from propagation beyond the local machining area.
文摘Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for elliptical cylinder waves. The formulas of reflection and transmission coefficients for an elliptical cylinder multilayer structure are driven. Reflection and transmission coefficients of elliptical cylinder waves by a single elliptical cylinder interface is presented. The obtained formulas can be generalized to the cold plasma filled structures and thus the obtained results in the limit of circular cylinder structures are investigated.
基金Supported by the National Natural Science Foundation of China under grant No.698710121 and 699301030
文摘TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then conditions under which pure TEn (TMn) modes may exist in multilayer waveguide structure with discontinuities are presented. E (H) step wavguides, ridged wavguides, microstrip lines and fin lines all satisfy the conditions, and hold for TEn (TMn) mode. The conventional conclusion that ridged waveguides with inhomogeneous dielectric-slab loading, microstrip lines and fin lines only hold for hybrid modes is revised. Compared with hybrid modes, the number of unknown variations and matching equations is reduced by half for pure TEn (TMn) modes, and the computation cost is decreased dramatically.
文摘Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).
基金supported by the Chinese Academy of SciencesKey Project(No.ZDRW-CN-2021-3-1-18)the NationalNatural Science Foundation of China(No.U2002217).
文摘Zirconate-based dielectric ceramics are potential materials for base metal electrode multilayer ceramic capacitors(BME-MLCCs)due to their exceptional chemical and thermal stability,as well as excellent dielectric properties.In this work,(Sr_(0.7)Ca_(0.3))1.02(Zr_(0.95−x)Ti_(0.05)Mn_(x))O_(3)+δ(SCZTM,0≤x≤0.05)ceramics with two coexisting phases were prepared using a solidstate reaction method in a reducing atmosphere.This study investigates the impact of Mn doping on sintering temperature,microstructure,and electrical properties of SCZTM ceramics.Mn doping can reduce the sintering temperature from 1450 to 1300℃.The impact of Mn doping on the structure and phonon vibration is minimal,resulting in a negligible effect on the intrinsic loss.The valence states of Mn ions and defects were characterized by X-ray photoelectron spectroscopy(XPS)and thermally stimulated depolarization current(TSDC)analysis.The results demonstrate the significant role of Mn doping in nonintrinsic loss.Due to the decrease in the concentration of oxygen vacancies(V_(O)),SCZTM(x=0.01)ceramics exhibit attractive properties:resistivity(ρ)=8.93×10^(14)Ω·cm,dielectric constant(ε_(r))=36.16,dielectric loss(tanδ)=2.43×10^(–4),temperature dependence of dielectric constant(τ_(ε))=15.44 ppm/℃(@−55–200℃,1 MHz),Q×f=30,257 GHz(@6.12 GHz),and temperature coefficient of resonant frequency(τf)=–9.9 ppm/℃.SCZTM(x=0.01)ceramic powders were used to successfully fabricate Ni-based multilayer ceramic capacitors(MLCCs)with a high insulation resistance of IR≥39.6 TΩ,an ultralow dielectric loss of tanδ=0.2×10^(–4),and a wide operating temperature range(temperature coefficient of capacitance(T_(cc))=10.88 ppm/℃,@−55–200℃,1 MHz).SCZTM ceramics exhibit properties that make them suitable for use as BMEMLCC materials with potential market applications.
文摘The propagation properties of the surface acoustic waves(SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.
基金The work is supported by National Natural Science Foundation of China(No:51662006 and No:21866026)National High Technology Research and Development Program of China(863 Program,No.2015AA034103)+1 种基金Science and Technology Project of B54 Provincial Department of Education(2020B5409)The authors declare that they have no conflict of interest.
文摘In this paper,the effect of stereom structure on the mechanical behavior of the Sea Urchin Inorganic Skeleton(SUIS)has been studied.The stereom microstructure of both Anthocidaris crassispina and Tripnenstes gratilla was characterized by Scanning Electron Microscopy(SEM).Results indicate that a three-layer porous structure consisting of a growth,a support,and a resorption(GSR)layer is a common denominator for both species.The effect of GSR layer order on the mechanical behavior of the SUIS was studied by a finite element method.The results show that the GSR model could effectively reduce the maximum tensile stress on its meridional sutures under unidirectional pressure,hydrostatic pressure,and self-weight situation.For a fabricated three-layered ceramic test strips with different layer orders,the mechanical properties have a completely opposite performance compared with the compressive properties of the calculated SUIS-Iike models.This indicates that the GSR structure can effectively improve the mechanical properties of the SUIS,but it cannot be applied to bionics without considering its synergistic effect with the macro-structure of the SUIS.This is a typical example of bionic invalidation by single structure,where multi-level structure bionics may be an effective solution.
文摘For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the MWCNTs provides electrical conductivity characteristics necessary for making desired EMI shielding materials. The novel process involves unique designing of chemical compositions and mineralogical phases of red mud, MWCNTs together with appropriate additive and solvent which results in the simultaneous and synergistic chemical reactions among various constituents thereby forming tailored precursor powder. Further, the ceramic processing of tailored precursor powder in appropriate environment enables formation of advanced ARMC shielding material having a variety of ceramic phases with multi elemental compositions and multi layered crystal structures. The synthesized material was characterized by various techniques namely XRD, PL, FESEM, EDXA. The reflection loss (R. L.) of the sample was calculated based on the measured complex permittivity and permeability. The advanced ARMC material with thickness t = 1.5 mm showed a minimum R. L. of -35.5 Db at 14.0 GHz with a response band width of 1.8 GHz. Thus, the developed advanced ARMC material acts as a good EMI wave absorber.
基金supported by the National High Technology Research and Development Program of China (863 Program)(2008AA12Z305)
文摘An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available access points(APs),are utilized to establish the radio map in the off-line phase.And in the on-line phase,the two or three dimensional coordinates of mobile terminals(MTs) are estimated according to the similarity between the new recorded RSS or SNR and fingerprints pre-stored in radio map.Although the feed-forward ANN with three layers is sufficient to describe any nonlinear mapping relationship between inputs and outputs with finite discontinuous points,the efficient inputs for better training performances are difficult to be determined because of complex and dynamic indoor environment.Then,the discussion of distance relativity for different signal characteristics and optimal strategies for multi-mode phenomenon avoidance is presented.And also,the feasibility and effectiveness of this method are verified based on the experimental comparison with normal ANN without area division,K-nearest neighbor(KNN) and probability methods in typical office environment.
文摘In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)2acac(10 nm)/Alq3(25 nm)/BCP(5 nm)/Cs F(1 nm)/Al(150 nm)(x= 0.15,2.5 and 3.0 wt%),where NPB and BCP are used as the hole-injecting layer,electron transporting and hole blocking layer,respectively.White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration.The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m^2 at 14 V.The Commission International de I'Eclairage(CIE)(1931) coordinates of white emission are well within the white zone,which moves from(0.35,0.33) to(0.26,0.30) when the applied voltage is varied from 5 V to 14 V.
文摘The precipitation of epsilon copper at 1023 K ageing in ferrite antibacterial stainless steel was investigated by a combination of electron microscopy and micro-Vickers hardness measurement. The results show that epsilon copper precipitation occurs within 90 s, Complex multilayer structure confirmed as twins and stacking faults on {111}ε-Cu planes was observed in the precipitates. The precipitates grow by the lengthwise enlargement of a set of parallel layers, having [111]ε-Cu and [112]ε-Cu preferred growth orientations. The volume fraction of precipitates f formed within 120 min can be predicted by a modified Avrami equation (In1/1-f= kt + b). Simultaneously, substituent atom clusters with a size of 5-10 nm was found to occur in the solution and cause matrix strain. The precipitate morphology and distribution on the surface of ferrite antibacterial stainless steel are associated with surface crystallographic orientation of the matrix. The precipitates are predominantly located within the ferrite grains of 〈110〉 orientation. The precipitates located on {111}α-Fe surface planes have sphere or ellipse shape.